Added a simple test to verify gesture recognition results
This commit is contained in:
		
							parent
							
								
									9a1a9d4c13
								
							
						
					
					
						commit
						18eb089d39
					
				| 
						 | 
					@ -55,11 +55,13 @@ py_library(
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
py_library(
 | 
					py_library(
 | 
				
			||||||
    name = "gesture",
 | 
					    name = "landmark_detection_result",
 | 
				
			||||||
    srcs = ["gesture.py"],
 | 
					    srcs = ["landmark_detection_result.py"],
 | 
				
			||||||
    deps = [
 | 
					    deps = [
 | 
				
			||||||
 | 
					        ":rect",
 | 
				
			||||||
        ":classification",
 | 
					        ":classification",
 | 
				
			||||||
        ":landmark",
 | 
					        ":landmark",
 | 
				
			||||||
 | 
					        "//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
 | 
				
			||||||
        "//mediapipe/tasks/python/core:optional_dependencies",
 | 
					        "//mediapipe/tasks/python/core:optional_dependencies",
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -14,14 +14,13 @@
 | 
				
			||||||
"""Classification data class."""
 | 
					"""Classification data class."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import dataclasses
 | 
					import dataclasses
 | 
				
			||||||
from typing import Any, List
 | 
					from typing import Any, List, Optional
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from mediapipe.framework.formats import classification_pb2
 | 
					from mediapipe.framework.formats import classification_pb2
 | 
				
			||||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
 | 
					from mediapipe.tasks.python.core.optional_dependencies import doc_controls
 | 
				
			||||||
 | 
					
 | 
				
			||||||
_ClassificationProto = classification_pb2.Classification
 | 
					_ClassificationProto = classification_pb2.Classification
 | 
				
			||||||
_ClassificationListProto = classification_pb2.ClassificationList
 | 
					_ClassificationListProto = classification_pb2.ClassificationList
 | 
				
			||||||
_ClassificationListCollectionProto = classification_pb2.ClassificationListCollection
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@dataclasses.dataclass
 | 
					@dataclasses.dataclass
 | 
				
			||||||
| 
						 | 
					@ -35,10 +34,10 @@ class Classification:
 | 
				
			||||||
    display_name: Optional human-readable string for display purposes.
 | 
					    display_name: Optional human-readable string for display purposes.
 | 
				
			||||||
  """
 | 
					  """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  index: int
 | 
					  index: Optional[int] = None
 | 
				
			||||||
  score: float
 | 
					  score: Optional[float] = None
 | 
				
			||||||
  label_name: str
 | 
					  label: Optional[str] = None
 | 
				
			||||||
  display_name: str
 | 
					  display_name: Optional[str] = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					  @doc_controls.do_not_generate_docs
 | 
				
			||||||
  def to_pb2(self) -> _ClassificationProto:
 | 
					  def to_pb2(self) -> _ClassificationProto:
 | 
				
			||||||
| 
						 | 
					@ -46,7 +45,7 @@ class Classification:
 | 
				
			||||||
    return _ClassificationProto(
 | 
					    return _ClassificationProto(
 | 
				
			||||||
        index=self.index,
 | 
					        index=self.index,
 | 
				
			||||||
        score=self.score,
 | 
					        score=self.score,
 | 
				
			||||||
        label_name=self.label_name,
 | 
					        label=self.label,
 | 
				
			||||||
        display_name=self.display_name)
 | 
					        display_name=self.display_name)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @classmethod
 | 
					  @classmethod
 | 
				
			||||||
| 
						 | 
					@ -56,7 +55,7 @@ class Classification:
 | 
				
			||||||
    return Classification(
 | 
					    return Classification(
 | 
				
			||||||
        index=pb2_obj.index,
 | 
					        index=pb2_obj.index,
 | 
				
			||||||
        score=pb2_obj.score,
 | 
					        score=pb2_obj.score,
 | 
				
			||||||
        label_name=pb2_obj.label_name,
 | 
					        label=pb2_obj.label,
 | 
				
			||||||
        display_name=pb2_obj.display_name)
 | 
					        display_name=pb2_obj.display_name)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  def __eq__(self, other: Any) -> bool:
 | 
					  def __eq__(self, other: Any) -> bool:
 | 
				
			||||||
| 
						 | 
					@ -86,8 +85,8 @@ class ClassificationList:
 | 
				
			||||||
  """
 | 
					  """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  classifications: List[Classification]
 | 
					  classifications: List[Classification]
 | 
				
			||||||
  tensor_index: int
 | 
					  tensor_index: Optional[int] = None
 | 
				
			||||||
  tensor_name: str
 | 
					  tensor_name: Optional[str] = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					  @doc_controls.do_not_generate_docs
 | 
				
			||||||
  def to_pb2(self) -> _ClassificationListProto:
 | 
					  def to_pb2(self) -> _ClassificationListProto:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,138 +0,0 @@
 | 
				
			||||||
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
					 | 
				
			||||||
# you may not use this file except in compliance with the License.
 | 
					 | 
				
			||||||
# You may obtain a copy of the License at
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
# Unless required by applicable law or agreed to in writing, software
 | 
					 | 
				
			||||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
					 | 
				
			||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
					 | 
				
			||||||
# See the License for the specific language governing permissions and
 | 
					 | 
				
			||||||
# limitations under the License.
 | 
					 | 
				
			||||||
"""Gesture data class."""
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import dataclasses
 | 
					 | 
				
			||||||
from typing import Any, List
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.components.containers import classification
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.components.containers import landmark
 | 
					 | 
				
			||||||
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@dataclasses.dataclass
 | 
					 | 
				
			||||||
class GestureRecognitionResult:
 | 
					 | 
				
			||||||
  """ The gesture recognition result from GestureRecognizer, where each vector
 | 
					 | 
				
			||||||
  element represents a single hand detected in the image.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Attributes:
 | 
					 | 
				
			||||||
    gestures:  Recognized hand gestures with sorted order such that the
 | 
					 | 
				
			||||||
      winning label is the first item in the list.
 | 
					 | 
				
			||||||
    handedness: Classification of handedness.
 | 
					 | 
				
			||||||
    hand_landmarks: Detected hand landmarks in normalized image coordinates.
 | 
					 | 
				
			||||||
    hand_world_landmarks: Detected hand landmarks in world coordinates.
 | 
					 | 
				
			||||||
  """
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  gestures: List[classification.ClassificationList]
 | 
					 | 
				
			||||||
  handedness: List[classification.ClassificationList]
 | 
					 | 
				
			||||||
  hand_landmarks: List[landmark.NormalizedLandmarkList]
 | 
					 | 
				
			||||||
  hand_world_landmarks: List[landmark.LandmarkList]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					 | 
				
			||||||
  def to_pb2(self) -> _DetectionProto:
 | 
					 | 
				
			||||||
    """Generates a Detection protobuf object."""
 | 
					 | 
				
			||||||
    labels = []
 | 
					 | 
				
			||||||
    label_ids = []
 | 
					 | 
				
			||||||
    scores = []
 | 
					 | 
				
			||||||
    display_names = []
 | 
					 | 
				
			||||||
    for category in self.categories:
 | 
					 | 
				
			||||||
      scores.append(category.score)
 | 
					 | 
				
			||||||
      if category.index:
 | 
					 | 
				
			||||||
        label_ids.append(category.index)
 | 
					 | 
				
			||||||
      if category.category_name:
 | 
					 | 
				
			||||||
        labels.append(category.category_name)
 | 
					 | 
				
			||||||
      if category.display_name:
 | 
					 | 
				
			||||||
        display_names.append(category.display_name)
 | 
					 | 
				
			||||||
    return _DetectionProto(
 | 
					 | 
				
			||||||
        label=labels,
 | 
					 | 
				
			||||||
        label_id=label_ids,
 | 
					 | 
				
			||||||
        score=scores,
 | 
					 | 
				
			||||||
        display_name=display_names,
 | 
					 | 
				
			||||||
        location_data=_LocationDataProto(
 | 
					 | 
				
			||||||
            format=_LocationDataProto.Format.BOUNDING_BOX,
 | 
					 | 
				
			||||||
            bounding_box=self.bounding_box.to_pb2()))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  @classmethod
 | 
					 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					 | 
				
			||||||
  def create_from_pb2(cls, pb2_obj: _DetectionProto) -> 'Detection':
 | 
					 | 
				
			||||||
    """Creates a `Detection` object from the given protobuf object."""
 | 
					 | 
				
			||||||
    categories = []
 | 
					 | 
				
			||||||
    for idx, score in enumerate(pb2_obj.score):
 | 
					 | 
				
			||||||
      categories.append(
 | 
					 | 
				
			||||||
          category_module.Category(
 | 
					 | 
				
			||||||
              score=score,
 | 
					 | 
				
			||||||
              index=pb2_obj.label_id[idx]
 | 
					 | 
				
			||||||
              if idx < len(pb2_obj.label_id) else None,
 | 
					 | 
				
			||||||
              category_name=pb2_obj.label[idx]
 | 
					 | 
				
			||||||
              if idx < len(pb2_obj.label) else None,
 | 
					 | 
				
			||||||
              display_name=pb2_obj.display_name[idx]
 | 
					 | 
				
			||||||
              if idx < len(pb2_obj.display_name) else None))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return Detection(
 | 
					 | 
				
			||||||
        bounding_box=bounding_box_module.BoundingBox.create_from_pb2(
 | 
					 | 
				
			||||||
            pb2_obj.location_data.bounding_box),
 | 
					 | 
				
			||||||
        categories=categories)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  def __eq__(self, other: Any) -> bool:
 | 
					 | 
				
			||||||
    """Checks if this object is equal to the given object.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Args:
 | 
					 | 
				
			||||||
      other: The object to be compared with.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Returns:
 | 
					 | 
				
			||||||
      True if the objects are equal.
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    if not isinstance(other, Detection):
 | 
					 | 
				
			||||||
      return False
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return self.to_pb2().__eq__(other.to_pb2())
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@dataclasses.dataclass
 | 
					 | 
				
			||||||
class DetectionResult:
 | 
					 | 
				
			||||||
  """Represents the list of detected objects.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Attributes:
 | 
					 | 
				
			||||||
    detections: A list of `Detection` objects.
 | 
					 | 
				
			||||||
  """
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  detections: List[Detection]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					 | 
				
			||||||
  def to_pb2(self) -> _DetectionListProto:
 | 
					 | 
				
			||||||
    """Generates a DetectionList protobuf object."""
 | 
					 | 
				
			||||||
    return _DetectionListProto(
 | 
					 | 
				
			||||||
        detection=[detection.to_pb2() for detection in self.detections])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  @classmethod
 | 
					 | 
				
			||||||
  @doc_controls.do_not_generate_docs
 | 
					 | 
				
			||||||
  def create_from_pb2(cls, pb2_obj: _DetectionListProto) -> 'DetectionResult':
 | 
					 | 
				
			||||||
    """Creates a `DetectionResult` object from the given protobuf object."""
 | 
					 | 
				
			||||||
    return DetectionResult(detections=[
 | 
					 | 
				
			||||||
        Detection.create_from_pb2(detection) for detection in pb2_obj.detection
 | 
					 | 
				
			||||||
    ])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  def __eq__(self, other: Any) -> bool:
 | 
					 | 
				
			||||||
    """Checks if this object is equal to the given object.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Args:
 | 
					 | 
				
			||||||
      other: The object to be compared with.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Returns:
 | 
					 | 
				
			||||||
      True if the objects are equal.
 | 
					 | 
				
			||||||
    """
 | 
					 | 
				
			||||||
    if not isinstance(other, DetectionResult):
 | 
					 | 
				
			||||||
      return False
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return self.to_pb2().__eq__(other.to_pb2())
 | 
					 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,82 @@
 | 
				
			||||||
 | 
					# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					"""Landmark Detection Result data class."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import dataclasses
 | 
				
			||||||
 | 
					from typing import Any, Optional
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
 | 
				
			||||||
 | 
					from mediapipe.tasks.python.components.containers import rect as rect_module
 | 
				
			||||||
 | 
					from mediapipe.tasks.python.components.containers import classification as classification_module
 | 
				
			||||||
 | 
					from mediapipe.tasks.python.components.containers import landmark as landmark_module
 | 
				
			||||||
 | 
					from mediapipe.tasks.python.core.optional_dependencies import doc_controls
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
 | 
				
			||||||
 | 
					_NormalizedRect = rect_module.NormalizedRect
 | 
				
			||||||
 | 
					_ClassificationList = classification_module.ClassificationList
 | 
				
			||||||
 | 
					_NormalizedLandmarkList = landmark_module.NormalizedLandmarkList
 | 
				
			||||||
 | 
					_LandmarkList = landmark_module.LandmarkList
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@dataclasses.dataclass
 | 
				
			||||||
 | 
					class LandmarksDetectionResult:
 | 
				
			||||||
 | 
					  """Represents the landmarks detection result.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Attributes:
 | 
				
			||||||
 | 
					    landmarks : A `NormalizedLandmarkList` object.
 | 
				
			||||||
 | 
					    classifications : A `ClassificationList` object.
 | 
				
			||||||
 | 
					    world_landmarks : A `LandmarkList` object.
 | 
				
			||||||
 | 
					    rect : A `NormalizedRect` object.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  landmarks: Optional[_NormalizedLandmarkList]
 | 
				
			||||||
 | 
					  classifications: Optional[_ClassificationList]
 | 
				
			||||||
 | 
					  world_landmarks: Optional[_LandmarkList]
 | 
				
			||||||
 | 
					  rect: _NormalizedRect
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @doc_controls.do_not_generate_docs
 | 
				
			||||||
 | 
					  def to_pb2(self) -> _LandmarksDetectionResultProto:
 | 
				
			||||||
 | 
					    """Generates a LandmarksDetectionResult protobuf object."""
 | 
				
			||||||
 | 
					    return _LandmarksDetectionResultProto(
 | 
				
			||||||
 | 
					      landmarks=self.landmarks.to_pb2(),
 | 
				
			||||||
 | 
					      classifications=self.classifications.to_pb2(),
 | 
				
			||||||
 | 
					      world_landmarks=self.world_landmarks.to_pb2(),
 | 
				
			||||||
 | 
					      rect=self.rect.to_pb2())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  @classmethod
 | 
				
			||||||
 | 
					  @doc_controls.do_not_generate_docs
 | 
				
			||||||
 | 
					  def create_from_pb2(
 | 
				
			||||||
 | 
					      cls,
 | 
				
			||||||
 | 
					      pb2_obj: _LandmarksDetectionResultProto
 | 
				
			||||||
 | 
					  ) -> 'LandmarksDetectionResult':
 | 
				
			||||||
 | 
					    """Creates a `LandmarksDetectionResult` object from the given protobuf
 | 
				
			||||||
 | 
					    object."""
 | 
				
			||||||
 | 
					    return LandmarksDetectionResult(
 | 
				
			||||||
 | 
					      landmarks=_NormalizedLandmarkList.create_from_pb2(pb2_obj.landmarks),
 | 
				
			||||||
 | 
					      classifications=_ClassificationList.create_from_pb2(
 | 
				
			||||||
 | 
					        pb2_obj.classifications),
 | 
				
			||||||
 | 
					      world_landmarks=_LandmarkList.create_from_pb2(pb2_obj.world_landmarks),
 | 
				
			||||||
 | 
					      rect=_NormalizedRect.create_from_pb2(pb2_obj.rect))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def __eq__(self, other: Any) -> bool:
 | 
				
			||||||
 | 
					    """Checks if this object is equal to the given object.
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					      other: The object to be compared with.
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					      True if the objects are equal.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if not isinstance(other, LandmarksDetectionResult):
 | 
				
			||||||
 | 
					      return False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return self.to_pb2().__eq__(other.to_pb2())
 | 
				
			||||||
| 
						 | 
					@ -43,15 +43,19 @@ py_test(
 | 
				
			||||||
    data = [
 | 
					    data = [
 | 
				
			||||||
        "//mediapipe/tasks/testdata/vision:test_images",
 | 
					        "//mediapipe/tasks/testdata/vision:test_images",
 | 
				
			||||||
        "//mediapipe/tasks/testdata/vision:test_models",
 | 
					        "//mediapipe/tasks/testdata/vision:test_models",
 | 
				
			||||||
 | 
					        "//mediapipe/tasks/testdata/vision:test_protos",
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
    deps = [
 | 
					    deps = [
 | 
				
			||||||
        "//mediapipe/python:_framework_bindings",
 | 
					        "//mediapipe/python:_framework_bindings",
 | 
				
			||||||
 | 
					        "//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
 | 
				
			||||||
 | 
					        "//mediapipe/tasks/python/components/containers:rect",
 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:classification",
 | 
					        "//mediapipe/tasks/python/components/containers:classification",
 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:landmark",
 | 
					        "//mediapipe/tasks/python/components/containers:landmark",
 | 
				
			||||||
        "//mediapipe/tasks/python/components/containers:rect",
 | 
					        "//mediapipe/tasks/python/components/containers:landmark_detection_result",
 | 
				
			||||||
        "//mediapipe/tasks/python/core:base_options",
 | 
					        "//mediapipe/tasks/python/core:base_options",
 | 
				
			||||||
        "//mediapipe/tasks/python/test:test_utils",
 | 
					        "//mediapipe/tasks/python/test:test_utils",
 | 
				
			||||||
        "//mediapipe/tasks/python/vision:gesture_recognizer",
 | 
					        "//mediapipe/tasks/python/vision:gesture_recognizer",
 | 
				
			||||||
        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
					        "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
 | 
				
			||||||
 | 
					        "@com_google_protobuf//:protobuf_python"
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,23 +15,31 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import enum
 | 
					import enum
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from google.protobuf import text_format
 | 
				
			||||||
from absl.testing import absltest
 | 
					from absl.testing import absltest
 | 
				
			||||||
from absl.testing import parameterized
 | 
					from absl.testing import parameterized
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from mediapipe.python._framework_bindings import image as image_module
 | 
					from mediapipe.python._framework_bindings import image as image_module
 | 
				
			||||||
 | 
					from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
 | 
				
			||||||
from mediapipe.tasks.python.components.containers import rect as rect_module
 | 
					from mediapipe.tasks.python.components.containers import rect as rect_module
 | 
				
			||||||
from mediapipe.tasks.python.components.containers import classification as classification_module
 | 
					from mediapipe.tasks.python.components.containers import classification as classification_module
 | 
				
			||||||
from mediapipe.tasks.python.components.containers import landmark as landmark_module
 | 
					from mediapipe.tasks.python.components.containers import landmark as landmark_module
 | 
				
			||||||
 | 
					from mediapipe.tasks.python.components.containers import landmark_detection_result as landmark_detection_result_module
 | 
				
			||||||
from mediapipe.tasks.python.core import base_options as base_options_module
 | 
					from mediapipe.tasks.python.core import base_options as base_options_module
 | 
				
			||||||
from mediapipe.tasks.python.test import test_utils
 | 
					from mediapipe.tasks.python.test import test_utils
 | 
				
			||||||
from mediapipe.tasks.python.vision import gesture_recognizer
 | 
					from mediapipe.tasks.python.vision import gesture_recognizer
 | 
				
			||||||
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
					from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
 | 
				
			||||||
_BaseOptions = base_options_module.BaseOptions
 | 
					_BaseOptions = base_options_module.BaseOptions
 | 
				
			||||||
_NormalizedRect = rect_module.NormalizedRect
 | 
					_NormalizedRect = rect_module.NormalizedRect
 | 
				
			||||||
 | 
					_Classification = classification_module.Classification
 | 
				
			||||||
_ClassificationList = classification_module.ClassificationList
 | 
					_ClassificationList = classification_module.ClassificationList
 | 
				
			||||||
 | 
					_Landmark = landmark_module.Landmark
 | 
				
			||||||
_LandmarkList = landmark_module.LandmarkList
 | 
					_LandmarkList = landmark_module.LandmarkList
 | 
				
			||||||
 | 
					_NormalizedLandmark = landmark_module.NormalizedLandmark
 | 
				
			||||||
_NormalizedLandmarkList = landmark_module.NormalizedLandmarkList
 | 
					_NormalizedLandmarkList = landmark_module.NormalizedLandmarkList
 | 
				
			||||||
 | 
					_LandmarksDetectionResult = landmark_detection_result_module.LandmarksDetectionResult
 | 
				
			||||||
_Image = image_module.Image
 | 
					_Image = image_module.Image
 | 
				
			||||||
_GestureRecognizer = gesture_recognizer.GestureRecognizer
 | 
					_GestureRecognizer = gesture_recognizer.GestureRecognizer
 | 
				
			||||||
_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
 | 
					_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
 | 
				
			||||||
| 
						 | 
					@ -39,8 +47,35 @@ _GestureRecognitionResult = gesture_recognizer.GestureRecognitionResult
 | 
				
			||||||
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
 | 
					_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
 | 
				
			||||||
 | 
					
 | 
				
			||||||
_GESTURE_RECOGNIZER_MODEL_FILE = 'gesture_recognizer.task'
 | 
					_GESTURE_RECOGNIZER_MODEL_FILE = 'gesture_recognizer.task'
 | 
				
			||||||
_IMAGE_FILE = 'right_hands.jpg'
 | 
					_THUMB_UP_IMAGE = 'thumb_up.jpg'
 | 
				
			||||||
_EXPECTED_DETECTION_RESULT = _GestureRecognitionResult([], [], [], [])
 | 
					_THUMB_UP_LANDMARKS = "thumb_up_landmarks.pbtxt"
 | 
				
			||||||
 | 
					_THUMB_UP_LABEL = "Thumb_Up"
 | 
				
			||||||
 | 
					_THUMB_UP_INDEX = 5
 | 
				
			||||||
 | 
					_LANDMARKS_ERROR_TOLERANCE = 0.03
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _get_expected_gesture_recognition_result(
 | 
				
			||||||
 | 
					    file_path: str, gesture_label: str, gesture_index: int
 | 
				
			||||||
 | 
					) -> _GestureRecognitionResult:
 | 
				
			||||||
 | 
					  landmarks_detection_result_file_path = test_utils.get_test_data_path(
 | 
				
			||||||
 | 
					    file_path)
 | 
				
			||||||
 | 
					  with open(landmarks_detection_result_file_path, "rb") as f:
 | 
				
			||||||
 | 
					    landmarks_detection_result_proto = _LandmarksDetectionResultProto()
 | 
				
			||||||
 | 
					    # # Use this if a .pb file is available.
 | 
				
			||||||
 | 
					    # landmarks_detection_result_proto.ParseFromString(f.read())
 | 
				
			||||||
 | 
					    text_format.Parse(f.read(), landmarks_detection_result_proto)
 | 
				
			||||||
 | 
					    landmarks_detection_result = _LandmarksDetectionResult.create_from_pb2(
 | 
				
			||||||
 | 
					        landmarks_detection_result_proto)
 | 
				
			||||||
 | 
					  gesture = _ClassificationList(
 | 
				
			||||||
 | 
					      classifications=[
 | 
				
			||||||
 | 
					        _Classification(label=gesture_label, index=gesture_index,
 | 
				
			||||||
 | 
					                        display_name='')
 | 
				
			||||||
 | 
					      ], tensor_index=0, tensor_name='')
 | 
				
			||||||
 | 
					  return _GestureRecognitionResult(
 | 
				
			||||||
 | 
					      gestures=[gesture],
 | 
				
			||||||
 | 
					      handedness=[landmarks_detection_result.classifications],
 | 
				
			||||||
 | 
					      hand_landmarks=[landmarks_detection_result.landmarks],
 | 
				
			||||||
 | 
					      hand_world_landmarks=[landmarks_detection_result.world_landmarks])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class ModelFileType(enum.Enum):
 | 
					class ModelFileType(enum.Enum):
 | 
				
			||||||
| 
						 | 
					@ -53,14 +88,45 @@ class GestureRecognizerTest(parameterized.TestCase):
 | 
				
			||||||
  def setUp(self):
 | 
					  def setUp(self):
 | 
				
			||||||
    super().setUp()
 | 
					    super().setUp()
 | 
				
			||||||
    self.test_image = _Image.create_from_file(
 | 
					    self.test_image = _Image.create_from_file(
 | 
				
			||||||
        test_utils.get_test_data_path(_IMAGE_FILE))
 | 
					        test_utils.get_test_data_path(_THUMB_UP_IMAGE))
 | 
				
			||||||
    self.gesture_recognizer_model_path = test_utils.get_test_data_path(
 | 
					    self.gesture_recognizer_model_path = test_utils.get_test_data_path(
 | 
				
			||||||
        _GESTURE_RECOGNIZER_MODEL_FILE)
 | 
					        _GESTURE_RECOGNIZER_MODEL_FILE)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  def _assert_actual_result_approximately_matches_expected_result(
 | 
				
			||||||
 | 
					      self,
 | 
				
			||||||
 | 
					      actual_result: _GestureRecognitionResult,
 | 
				
			||||||
 | 
					      expected_result: _GestureRecognitionResult
 | 
				
			||||||
 | 
					  ):
 | 
				
			||||||
 | 
					    # Expects to have the same number of hands detected.
 | 
				
			||||||
 | 
					    self.assertLen(actual_result.hand_landmarks,
 | 
				
			||||||
 | 
					                   len(expected_result.hand_landmarks))
 | 
				
			||||||
 | 
					    self.assertLen(actual_result.hand_world_landmarks,
 | 
				
			||||||
 | 
					                   len(expected_result.hand_world_landmarks))
 | 
				
			||||||
 | 
					    self.assertLen(actual_result.handedness, len(expected_result.handedness))
 | 
				
			||||||
 | 
					    self.assertLen(actual_result.gestures, len(expected_result.gestures))
 | 
				
			||||||
 | 
					    # Actual landmarks match expected landmarks.
 | 
				
			||||||
 | 
					    self.assertEqual(actual_result.hand_landmarks,
 | 
				
			||||||
 | 
					                     expected_result.hand_landmarks)
 | 
				
			||||||
 | 
					    # Actual handedness matches expected handedness.
 | 
				
			||||||
 | 
					    actual_top_handedness = actual_result.handedness[0].classifications[0]
 | 
				
			||||||
 | 
					    expected_top_handedness = expected_result.handedness[0].classifications[0]
 | 
				
			||||||
 | 
					    self.assertEqual(actual_top_handedness.index, expected_top_handedness.index)
 | 
				
			||||||
 | 
					    self.assertEqual(actual_top_handedness.label, expected_top_handedness.label)
 | 
				
			||||||
 | 
					    # Actual gesture with top score matches expected gesture.
 | 
				
			||||||
 | 
					    actual_top_gesture = actual_result.gestures[0].classifications[0]
 | 
				
			||||||
 | 
					    expected_top_gesture = expected_result.gestures[0].classifications[0]
 | 
				
			||||||
 | 
					    self.assertEqual(actual_top_gesture.index, expected_top_gesture.index)
 | 
				
			||||||
 | 
					    self.assertEqual(actual_top_gesture.label, expected_top_gesture.label)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  @parameterized.parameters(
 | 
					  @parameterized.parameters(
 | 
				
			||||||
      (ModelFileType.FILE_NAME, _EXPECTED_DETECTION_RESULT),
 | 
					      (ModelFileType.FILE_NAME, 0.3, _get_expected_gesture_recognition_result(
 | 
				
			||||||
      (ModelFileType.FILE_CONTENT, _EXPECTED_DETECTION_RESULT))
 | 
					          _THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
 | 
				
			||||||
  def test_recognize(self, model_file_type, expected_recognition_result):
 | 
					      )),
 | 
				
			||||||
 | 
					      (ModelFileType.FILE_CONTENT, 0.3, _get_expected_gesture_recognition_result(
 | 
				
			||||||
 | 
					          _THUMB_UP_LANDMARKS, _THUMB_UP_LABEL, _THUMB_UP_INDEX
 | 
				
			||||||
 | 
					      )))
 | 
				
			||||||
 | 
					  def test_recognize(self, model_file_type, min_gesture_confidence,
 | 
				
			||||||
 | 
					                     expected_recognition_result):
 | 
				
			||||||
    # Creates gesture recognizer.
 | 
					    # Creates gesture recognizer.
 | 
				
			||||||
    if model_file_type is ModelFileType.FILE_NAME:
 | 
					    if model_file_type is ModelFileType.FILE_NAME:
 | 
				
			||||||
      gesture_recognizer_base_options = _BaseOptions(
 | 
					      gesture_recognizer_base_options = _BaseOptions(
 | 
				
			||||||
| 
						 | 
					@ -75,13 +141,16 @@ class GestureRecognizerTest(parameterized.TestCase):
 | 
				
			||||||
      raise ValueError('model_file_type is invalid.')
 | 
					      raise ValueError('model_file_type is invalid.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    options = _GestureRecognizerOptions(
 | 
					    options = _GestureRecognizerOptions(
 | 
				
			||||||
        base_options=gesture_recognizer_base_options)
 | 
					        base_options=gesture_recognizer_base_options,
 | 
				
			||||||
 | 
					        min_gesture_confidence=min_gesture_confidence
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    recognizer = _GestureRecognizer.create_from_options(options)
 | 
					    recognizer = _GestureRecognizer.create_from_options(options)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Performs hand gesture recognition on the input.
 | 
					    # Performs hand gesture recognition on the input.
 | 
				
			||||||
    recognition_result = recognizer.recognize(self.test_image)
 | 
					    recognition_result = recognizer.recognize(self.test_image)
 | 
				
			||||||
    # Comparing results.
 | 
					    # Comparing results.
 | 
				
			||||||
    self.assertEqual(recognition_result, expected_recognition_result)
 | 
					    self._assert_actual_result_approximately_matches_expected_result(
 | 
				
			||||||
 | 
					        recognition_result, expected_recognition_result)
 | 
				
			||||||
    # Closes the gesture recognizer explicitly when the detector is not used in
 | 
					    # Closes the gesture recognizer explicitly when the detector is not used in
 | 
				
			||||||
    # a context.
 | 
					    # a context.
 | 
				
			||||||
    recognizer.close()
 | 
					    recognizer.close()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -136,8 +136,6 @@ class GestureRecognizerOptions:
 | 
				
			||||||
    """Generates an GestureRecognizerOptions protobuf object."""
 | 
					    """Generates an GestureRecognizerOptions protobuf object."""
 | 
				
			||||||
    base_options_proto = self.base_options.to_pb2()
 | 
					    base_options_proto = self.base_options.to_pb2()
 | 
				
			||||||
    base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
 | 
					    base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
 | 
				
			||||||
    # hand_landmark_detector_base_options_proto = self.hand_landmark_detector_base_options.to_pb2()
 | 
					 | 
				
			||||||
    # hand_landmark_detector_base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Configure hand detector options.
 | 
					    # Configure hand detector options.
 | 
				
			||||||
    hand_detector_options_proto = _HandDetectorGraphOptionsProto(
 | 
					    hand_detector_options_proto = _HandDetectorGraphOptionsProto(
 | 
				
			||||||
| 
						 | 
					@ -153,13 +151,12 @@ class GestureRecognizerOptions:
 | 
				
			||||||
        min_tracking_confidence=self.min_tracking_confidence)
 | 
					        min_tracking_confidence=self.min_tracking_confidence)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Configure hand gesture recognizer options.
 | 
					    # Configure hand gesture recognizer options.
 | 
				
			||||||
    hand_gesture_recognizer_options_proto = _HandGestureRecognizerGraphOptionsProto()
 | 
					 | 
				
			||||||
    if self.min_gesture_confidence >= 0:
 | 
					 | 
				
			||||||
    classifier_options = _ClassifierOptions(
 | 
					    classifier_options = _ClassifierOptions(
 | 
				
			||||||
        score_threshold=self.min_gesture_confidence)
 | 
					        score_threshold=self.min_gesture_confidence)
 | 
				
			||||||
      hand_gesture_recognizer_options_proto.canned_gesture_classifier_graph_options = \
 | 
					    gesture_classifier_options = _GestureClassifierGraphOptionsProto(
 | 
				
			||||||
          _GestureClassifierGraphOptionsProto(
 | 
					 | 
				
			||||||
        classifier_options=classifier_options.to_pb2())
 | 
					        classifier_options=classifier_options.to_pb2())
 | 
				
			||||||
 | 
					    hand_gesture_recognizer_options_proto = _HandGestureRecognizerGraphOptionsProto(
 | 
				
			||||||
 | 
					        canned_gesture_classifier_graph_options=gesture_classifier_options)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return _GestureRecognizerGraphOptionsProto(
 | 
					    return _GestureRecognizerGraphOptionsProto(
 | 
				
			||||||
        base_options=base_options_proto,
 | 
					        base_options=base_options_proto,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										1
									
								
								mediapipe/tasks/testdata/vision/BUILD
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								mediapipe/tasks/testdata/vision/BUILD
									
									
									
									
										vendored
									
									
								
							| 
						 | 
					@ -121,6 +121,7 @@ filegroup(
 | 
				
			||||||
        "hand_landmark_full.tflite",
 | 
					        "hand_landmark_full.tflite",
 | 
				
			||||||
        "hand_landmark_lite.tflite",
 | 
					        "hand_landmark_lite.tflite",
 | 
				
			||||||
        "hand_landmarker.task",
 | 
					        "hand_landmarker.task",
 | 
				
			||||||
 | 
					        "gesture_recognizer.task",
 | 
				
			||||||
        "mobilenet_v1_0.25_192_quantized_1_default_1.tflite",
 | 
					        "mobilenet_v1_0.25_192_quantized_1_default_1.tflite",
 | 
				
			||||||
        "mobilenet_v1_0.25_224_1_default_1.tflite",
 | 
					        "mobilenet_v1_0.25_224_1_default_1.tflite",
 | 
				
			||||||
        "mobilenet_v1_0.25_224_1_metadata_1.tflite",
 | 
					        "mobilenet_v1_0.25_224_1_metadata_1.tflite",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user