Added files needed for the text embedder's implementation and tests

This commit is contained in:
kinaryml 2022-11-10 02:16:51 -08:00
parent 0ac604d507
commit 1604908a59
12 changed files with 811 additions and 0 deletions

View File

@ -98,6 +98,7 @@ cc_library(
"//conditions:default": [
"//mediapipe/tasks/cc/audio/audio_classifier:audio_classifier_graph",
"//mediapipe/tasks/cc/text/text_classifier:text_classifier_graph",
"//mediapipe/tasks/cc/text/text_embedder:text_embedder_graph",
],
}),
)

View File

@ -104,3 +104,12 @@ py_library(
"//mediapipe/tasks/python/core:optional_dependencies",
],
)
py_library(
name = "embedding_result",
srcs = ["embedding_result.py"],
deps = [
"//mediapipe/tasks/cc/components/containers/proto:embeddings_py_pb2",
"//mediapipe/tasks/python/core:optional_dependencies",
],
)

View File

@ -0,0 +1,210 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Embeddings data class."""
import dataclasses
from typing import Any, Optional, List
import numpy as np
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
_FloatEmbeddingProto = embeddings_pb2.FloatEmbedding
_QuantizedEmbeddingProto = embeddings_pb2.QuantizedEmbedding
_EmbeddingProto = embeddings_pb2.Embedding
_EmbeddingResultProto = embeddings_pb2.EmbeddingResult
@dataclasses.dataclass
class FloatEmbedding:
"""Defines a dense floating-point embedding.
Attributes:
values: A NumPy array indicating the raw output of the embedding layer.
"""
values: np.ndarray
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _FloatEmbeddingProto:
"""Generates a FloatEmbedding protobuf object."""
return _FloatEmbeddingProto(values=self.values)
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(
cls, pb2_obj: _FloatEmbeddingProto) -> 'FloatEmbedding':
"""Creates a `FloatEmbedding` object from the given protobuf object."""
return FloatEmbedding(values=np.array(pb2_obj.value_float, dtype=float))
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, FloatEmbedding):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class QuantizedEmbedding:
"""Defines a dense scalar-quantized embedding.
Attributes:
values: A NumPy array indicating the raw output of the embedding layer.
"""
values: np.ndarray
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _QuantizedEmbeddingProto:
"""Generates a QuantizedEmbedding protobuf object."""
return _QuantizedEmbeddingProto(values=self.values)
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(
cls, pb2_obj: _QuantizedEmbeddingProto) -> 'QuantizedEmbedding':
"""Creates a `QuantizedEmbedding` object from the given protobuf object."""
return QuantizedEmbedding(
values=np.array(bytearray(pb2_obj.value_string), dtype=np.uint8))
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, QuantizedEmbedding):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class Embedding:
"""Embedding result for a given embedder head.
Attributes:
embedding: The actual embedding, either floating-point or scalar-quantized.
head_index: The index of the embedder head that produced this embedding.
This is useful for multi-head models.
head_name: The name of the embedder head, which is the corresponding tensor
metadata name (if any). This is useful for multi-head models.
"""
embedding: np.ndarray
head_index: Optional[int] = None
head_name: Optional[str] = None
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _EmbeddingProto:
"""Generates a Embedding protobuf object."""
if self.embedding.dtype == float:
return _EmbeddingProto(float_embedding=self.embedding,
head_index=self.head_index,
head_name=self.head_name)
elif self.embedding.dtype == np.uint8:
return _EmbeddingProto(quantized_embedding=bytes(self.embedding),
head_index=self.head_index,
head_name=self.head_name)
else:
raise ValueError("Invalid dtype. Only float and np.uint8 are supported.")
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(
cls, pb2_obj: _EmbeddingProto) -> 'Embedding':
"""Creates a `Embedding` object from the given protobuf object."""
quantized_embedding = np.array(
bytearray(pb2_obj.quantized_embedding.values))
float_embedding = np.array(pb2_obj.float_embedding.values, dtype=float)
if len(quantized_embedding) == 0:
return Embedding(embedding=float_embedding,
head_index=pb2_obj.head_index,
head_name=pb2_obj.head_name)
else:
return Embedding(embedding=quantized_embedding,
head_index=pb2_obj.head_index,
head_name=pb2_obj.head_name)
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, Embedding):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class EmbeddingResult:
"""Embedding results for a given embedder model.
Attributes:
embeddings: A list of `Embedding` objects.
timestamp_ms: The optional timestamp (in milliseconds) of the start of the
chunk of data corresponding to these results. This is only used for
embedding extraction on time series (e.g. audio embedding). In these use
cases, the amount of data to process might exceed the maximum size that
the model can process: to solve this, the input data is split into
multiple chunks starting at different timestamps.
"""
embeddings: List[Embedding]
timestamp_ms: Optional[int] = None
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _EmbeddingResultProto:
"""Generates a EmbeddingResult protobuf object."""
return _EmbeddingResultProto(
embeddings=[
embedding.to_pb2() for embedding in self.embeddings
])
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(
cls, pb2_obj: _EmbeddingResultProto) -> 'EmbeddingResult':
"""Creates a `EmbeddingResult` object from the given protobuf object."""
return EmbeddingResult(
embeddings=[
Embedding.create_from_pb2(embedding)
for embedding in pb2_obj.embeddings
])
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, EmbeddingResult):
return False
return self.to_pb2().__eq__(other.to_pb2())

View File

@ -28,3 +28,12 @@ py_library(
"//mediapipe/tasks/python/core:optional_dependencies",
],
)
py_library(
name = "embedder_options",
srcs = ["embedder_options.py"],
deps = [
"//mediapipe/tasks/cc/components/processors/proto:embedder_options_py_pb2",
"//mediapipe/tasks/python/core:optional_dependencies",
],
)

View File

@ -0,0 +1,70 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Embedder options data class."""
import dataclasses
from typing import Any, Optional
from mediapipe.tasks.cc.components.processors.proto import embedder_options_pb2
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
_EmbedderOptionsProto = embedder_options_pb2.EmbedderOptions
@dataclasses.dataclass
class EmbedderOptions:
"""Shared options used by all embedding extraction tasks.
Attributes:
l2_normalize: Whether to normalize the returned feature vector with L2 norm.
Use this option only if the model does not already contain a native
L2_NORMALIZATION TF Lite Op. In most cases, this is already the case and
L2 norm is thus achieved through TF Lite inference.
quantize: Whether the returned embedding should be quantized to bytes via
scalar quantization. Embeddings are implicitly assumed to be unit-norm and
therefore any dimension is guaranteed to have a value in [-1.0, 1.0]. Use
the l2_normalize option if this is not the case.
"""
l2_normalize: Optional[bool] = None
quantize: Optional[bool] = None
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _EmbedderOptionsProto:
"""Generates a EmbedderOptions protobuf object."""
return _EmbedderOptionsProto(
l2_normalize=self.l2_normalize,
quantize=self.quantize)
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(cls, pb2_obj: _EmbedderOptionsProto) -> 'EmbedderOptions':
"""Creates a `EmbedderOptions` object from the given protobuf object."""
return EmbedderOptions(
l2_normalize=pb2_obj.l2_normalize,
quantize=pb2_obj.quantize)
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, EmbedderOptions):
return False
return self.to_pb2().__eq__(other.to_pb2())

View File

@ -0,0 +1,28 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Placeholder for internal Python strict library compatibility macro.
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
py_library(
name = "cosine_similarity",
srcs = ["cosine_similarity.py"],
deps = [
"//mediapipe/tasks/python/components/containers:embedding_result",
"//mediapipe/tasks/python/components/processors:embedder_options",
],
)

View File

@ -0,0 +1,13 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,61 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cosine similarity utilities."""
import numpy as np
from mediapipe.tasks.python.components.containers import embedding_result
from mediapipe.tasks.python.components.processors import embedder_options
_Embedding = embedding_result.Embedding
_EmbedderOptions = embedder_options.EmbedderOptions
def _compute_cosine_similarity(u, v):
if len(u.embedding) <= 0:
raise ValueError("Cannot compute cosing similarity on empty embeddings.")
norm_u = np.linalg.norm(u.embedding)
norm_v = np.linalg.norm(v.embedding)
if norm_u <= 0 or norm_v <= 0:
raise ValueError(
"Cannot compute cosine similarity on embedding with 0 norm.")
return np.dot(u.embedding, v.embedding.T) / (norm_u * norm_v)
def cosine_similarity(u: _Embedding, v: _Embedding) -> float:
"""Utility function to compute cosine similarity between two embedding.
May return an InvalidArgumentError if e.g. the feature vectors are of
different types (quantized vs. float), have different sizes, or have an
L2-norm of 0.
Args:
u: An embedding.
v: An embedding.
"""
if len(u.embedding) != len(v.embedding):
raise ValueError(f"Cannot compute cosine similarity between embeddings "
f"of different sizes "
f"({len(u.embedding)} vs. {len(v.embedding)}).")
if u.embedding.dtype == float and v.embedding.dtype == float:
return _compute_cosine_similarity(u, v)
if u.embedding.dtype == np.uint8 and v.embedding.dtype == np.uint8:
return _compute_cosine_similarity(u, v)
raise ValueError("Cannot compute cosine similarity between quantized and "
"float embeddings.")

View File

@ -34,3 +34,20 @@ py_test(
"//mediapipe/tasks/python/text:text_classifier",
],
)
py_test(
name = "text_embedder_test",
srcs = ["text_embedder_test.py"],
data = [
"//mediapipe/tasks/testdata/text:mobilebert_embedding_model",
"//mediapipe/tasks/testdata/text:regex_embedding_with_metadata",
],
deps = [
"//mediapipe/tasks/python/components/processors:embedder_options",
"//mediapipe/tasks/python/components/utils:cosine_similarity",
"//mediapipe/tasks/python/components/containers:embedding_result",
"//mediapipe/tasks/python/core:base_options",
"//mediapipe/tasks/python/test:test_utils",
"//mediapipe/tasks/python/text:text_embedder",
],
)

View File

@ -0,0 +1,207 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for text embedder."""
import enum
import os
from unittest import mock
import numpy as np
from absl.testing import absltest
from absl.testing import parameterized
from mediapipe.tasks.python.components.processors import embedder_options as embedder_options_module
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.test import test_utils
from mediapipe.tasks.python.text import text_embedder
ImageEmbedderResult = embedding_result_module.EmbeddingResult
_BaseOptions = base_options_module.BaseOptions
_EmbedderOptions = embedder_options_module.EmbedderOptions
_FloatEmbedding = embedding_result_module.FloatEmbedding
_QuantizedEmbedding = embedding_result_module.QuantizedEmbedding
_Embedding = embedding_result_module.Embedding
_TextEmbedder = text_embedder.TextEmbedder
_TextEmbedderOptions = text_embedder.TextEmbedderOptions
_BERT_MODEL_FILE = 'mobilebert_embedding_with_metadata.tflite'
_REGEX_MODEL_FILE = 'regex_one_embedding_with_metadata.tflite'
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/text'
# Tolerance for embedding vector coordinate values.
_EPSILON = 1e-4
# Tolerance for cosine similarity evaluation.
_SIMILARITY_TOLERANCE = 1e-6
class ModelFileType(enum.Enum):
FILE_CONTENT = 1
FILE_NAME = 2
class ImageEmbedderTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, _BERT_MODEL_FILE))
def test_create_from_file_succeeds_with_valid_model_path(self):
# Creates with default option and valid model file successfully.
with _TextEmbedder.create_from_model_path(self.model_path) as embedder:
self.assertIsInstance(embedder, _TextEmbedder)
def test_create_from_options_succeeds_with_valid_model_path(self):
# Creates with options containing model file successfully.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _TextEmbedderOptions(base_options=base_options)
with _TextEmbedder.create_from_options(options) as embedder:
self.assertIsInstance(embedder, _TextEmbedder)
def test_create_from_options_fails_with_invalid_model_path(self):
with self.assertRaisesRegex(
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
base_options = _BaseOptions(
model_asset_path='/path/to/invalid/model.tflite')
options = _TextEmbedderOptions(base_options=base_options)
_TextEmbedder.create_from_options(options)
def test_create_from_options_succeeds_with_valid_model_content(self):
# Creates with options containing model content successfully.
with open(self.model_path, 'rb') as f:
base_options = _BaseOptions(model_asset_buffer=f.read())
options = _TextEmbedderOptions(base_options=base_options)
embedder = _TextEmbedder.create_from_options(options)
self.assertIsInstance(embedder, _TextEmbedder)
def _check_embedding_value(self, result, expected_first_value):
# Check embedding first value.
self.assertAlmostEqual(result.embeddings[0].embedding[0],
expected_first_value, delta=_EPSILON)
def _check_embedding_size(self, result, quantize, expected_embedding_size):
# Check embedding size.
self.assertLen(result.embeddings, 1)
embedding_result = result.embeddings[0]
self.assertLen(embedding_result.embedding, expected_embedding_size)
if quantize:
self.assertEqual(embedding_result.embedding.dtype, np.uint8)
else:
self.assertEqual(embedding_result.embedding.dtype, float)
def _check_cosine_similarity(self, result0, result1, expected_similarity):
# Checks cosine similarity.
similarity = _TextEmbedder.cosine_similarity(
result0.embeddings[0], result1.embeddings[0])
self.assertAlmostEqual(similarity, expected_similarity,
delta=_SIMILARITY_TOLERANCE)
@parameterized.parameters(
(False, False, _BERT_MODEL_FILE, ModelFileType.FILE_NAME,
0.969514, 512, (19.9016, 22.626251)),
(True, False, _BERT_MODEL_FILE, ModelFileType.FILE_NAME,
0.969514, 512, (0.0585837, 0.0723035)),
(False, False, _REGEX_MODEL_FILE, ModelFileType.FILE_NAME,
0.999937, 16, (0.0309356, 0.0312863)),
(True, False, _REGEX_MODEL_FILE, ModelFileType.FILE_CONTENT,
0.999937, 16, (0.549632, 0.552879)),
)
def test_embed(self, l2_normalize, quantize, model_name, model_file_type,
expected_similarity, expected_size, expected_first_values):
# Creates embedder.
model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, model_name))
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
embedder_options = _EmbedderOptions(l2_normalize=l2_normalize,
quantize=quantize)
options = _TextEmbedderOptions(
base_options=base_options, embedder_options=embedder_options)
embedder = _TextEmbedder.create_from_options(options)
# Extracts both embeddings.
positive_text0 = "it's a charming and often affecting journey"
positive_text1 = "what a great and fantastic trip"
result0 = embedder.embed(positive_text0)
result1 = embedder.embed(positive_text1)
# Checks embeddings and cosine similarity.
expected_result0_value, expected_result1_value = expected_first_values
self._check_embedding_size(result0, quantize, expected_size)
self._check_embedding_size(result1, quantize, expected_size)
self._check_embedding_value(result0, expected_result0_value)
self._check_embedding_value(result1, expected_result1_value)
self._check_cosine_similarity(result0, result1, expected_similarity)
# Closes the embedder explicitly when the embedder is not used in
# a context.
embedder.close()
@parameterized.parameters(
(False, False, _BERT_MODEL_FILE, ModelFileType.FILE_NAME,
0.969514, 512, (19.9016, 22.626251)),
(True, False, _BERT_MODEL_FILE, ModelFileType.FILE_NAME,
0.969514, 512, (0.0585837, 0.0723035)),
(False, False, _REGEX_MODEL_FILE, ModelFileType.FILE_NAME,
0.999937, 16, (0.0309356, 0.0312863)),
(True, False, _REGEX_MODEL_FILE, ModelFileType.FILE_CONTENT,
0.999937, 16, (0.549632, 0.552879)),
)
def test_embed_in_context(self, l2_normalize, quantize, model_name,
model_file_type, expected_similarity,
expected_size, expected_first_values):
# Creates embedder.
model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, model_name))
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
embedder_options = _EmbedderOptions(l2_normalize=l2_normalize,
quantize=quantize)
options = _TextEmbedderOptions(
base_options=base_options, embedder_options=embedder_options)
with _TextEmbedder.create_from_options(options) as embedder:
# Extracts both embeddings.
positive_text0 = "it's a charming and often affecting journey"
positive_text1 = "what a great and fantastic trip"
result0 = embedder.embed(positive_text0)
result1 = embedder.embed(positive_text1)
# Checks embeddings and cosine similarity.
expected_result0_value, expected_result1_value = expected_first_values
self._check_embedding_size(result0, quantize, expected_size)
self._check_embedding_size(result1, quantize, expected_size)
self._check_embedding_value(result0, expected_result0_value)
self._check_embedding_value(result1, expected_result1_value)
self._check_cosine_similarity(result0, result1, expected_similarity)
if __name__ == '__main__':
absltest.main()

View File

@ -36,3 +36,23 @@ py_library(
"//mediapipe/tasks/python/text/core:base_text_task_api",
],
)
py_library(
name = "text_embedder",
srcs = [
"text_embedder.py",
],
deps = [
"//mediapipe/python:_framework_bindings",
"//mediapipe/python:packet_creator",
"//mediapipe/python:packet_getter",
"//mediapipe/tasks/cc/text/text_embedder/proto:text_embedder_graph_options_py_pb2",
"//mediapipe/tasks/cc/components/containers/proto:embeddings_py_pb2",
"//mediapipe/tasks/python/components/containers:embedding_result",
"//mediapipe/tasks/python/components/processors:embedder_options",
"//mediapipe/tasks/python/core:base_options",
"//mediapipe/tasks/python/core:optional_dependencies",
"//mediapipe/tasks/python/core:task_info",
"//mediapipe/tasks/python/text/core:base_text_task_api",
],
)

View File

@ -0,0 +1,166 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe text embedder task."""
import dataclasses
from typing import Callable, Mapping, Optional
from mediapipe.python import packet_creator
from mediapipe.python import packet_getter
from mediapipe.python._framework_bindings import packet as packet_module
from mediapipe.tasks.cc.text.text_embedder.proto import text_embedder_graph_options_pb2
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
from mediapipe.tasks.python.components.processors import embedder_options
from mediapipe.tasks.python.components.utils import cosine_similarity
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.core import task_info as task_info_module
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
from mediapipe.tasks.python.text.core import base_text_task_api
TextEmbedderResult = embedding_result_module.EmbeddingResult
_BaseOptions = base_options_module.BaseOptions
_TextEmbedderGraphOptionsProto = text_embedder_graph_options_pb2.TextEmbedderGraphOptions
_EmbedderOptions = embedder_options.EmbedderOptions
_TaskInfo = task_info_module.TaskInfo
_EMBEDDINGS_OUT_STREAM_NAME = 'embeddings_out'
_EMBEDDINGS_TAG = 'EMBEDDINGS'
_TEXT_IN_STREAM_NAME = 'text_in'
_TEXT_TAG = 'TEXT'
_TASK_GRAPH_NAME = 'mediapipe.tasks.text.text_embedder.TextEmbedderGraph'
_MICRO_SECONDS_PER_MILLISECOND = 1000
@dataclasses.dataclass
class TextEmbedderOptions:
"""Options for the text embedder task.
Attributes:
base_options: Base options for the text embedder task.
embedder_options: Options for the text embedder task.
"""
base_options: _BaseOptions
embedder_options: _EmbedderOptions = _EmbedderOptions()
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _TextEmbedderGraphOptionsProto:
"""Generates an TextEmbedderOptions protobuf object."""
base_options_proto = self.base_options.to_pb2()
embedder_options_proto = self.embedder_options.to_pb2()
return _TextEmbedderGraphOptionsProto(
base_options=base_options_proto,
embedder_options=embedder_options_proto
)
class TextEmbedder(base_text_task_api.BaseTextTaskApi):
"""Class that performs embedding extraction on text."""
@classmethod
def create_from_model_path(cls, model_path: str) -> 'ImageEmbedder':
"""Creates an `TextEmbedder` object from a TensorFlow Lite model and the
default `TextEmbedderOptions`.
Args:
model_path: Path to the model.
Returns:
`TextEmbedder` object that's created from the model file and the default
`TextEmbedderOptions`.
Raises:
ValueError: If failed to create `TextEmbedder` object from the provided
file such as invalid file path.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(model_asset_path=model_path)
options = TextEmbedderOptions(base_options=base_options)
return cls.create_from_options(options)
@classmethod
def create_from_options(cls,
options: TextEmbedderOptions) -> 'TextEmbedder':
"""Creates the `TextEmbedder` object from text embedder options.
Args:
options: Options for the text embedder task.
Returns:
`TextEmbedder` object that's created from `options`.
Raises:
ValueError: If failed to create `TextEmbedder` object from
`TextEmbedderOptions` such as missing the model.
RuntimeError: If other types of error occurred.
"""
task_info = _TaskInfo(
task_graph=_TASK_GRAPH_NAME,
input_streams=[':'.join([_TEXT_TAG, _TEXT_IN_STREAM_NAME])],
output_streams=[
':'.join([
_EMBEDDINGS_TAG,
_EMBEDDINGS_OUT_STREAM_NAME
])
],
task_options=options)
return cls(task_info.generate_graph_config())
def embed(
self,
text: str,
) -> TextEmbedderResult:
"""Performs text embedding extraction on the provided text.
Args:
text: The input text.
Returns:
An embedding result object that contains a list of embeddings.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If text embedder failed to run.
"""
output_packets = self._runner.process(
{_TEXT_IN_STREAM_NAME: packet_creator.create_string(text)})
embedding_result_proto = embeddings_pb2.EmbeddingResult()
embedding_result_proto.CopyFrom(
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
return TextEmbedderResult.create_from_pb2(embedding_result_proto)
@staticmethod
def cosine_similarity(u: embedding_result_module.Embedding,
v: embedding_result_module.Embedding) -> float:
"""Utility function to compute cosine similarity [1] between two embedding
entries. May return an InvalidArgumentError if e.g. the feature vectors are
of different types (quantized vs. float), have different sizes, or have a
an L2-norm of 0.
Args:
u: An embedding entry.
v: An embedding entry.
Returns:
The cosine similarity for the two embeddings.
Raises:
ValueError: May return an error if e.g. the feature vectors are of
different types (quantized vs. float), have different sizes, or have
an L2-norm of 0
"""
return cosine_similarity.cosine_similarity(u, v)