Add FaceDetector Java API

PiperOrigin-RevId: 515913662
This commit is contained in:
MediaPipe Team 2023-03-11 13:12:50 -08:00 committed by Copybara-Service
parent 296ee33be5
commit 131be2169a
5 changed files with 966 additions and 0 deletions

View File

@ -45,6 +45,7 @@ cc_binary(
deps = [ deps = [
"//mediapipe/calculators/core:flow_limiter_calculator", "//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni", "//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
"//mediapipe/tasks/cc/vision/face_detector:face_detector_graph",
"//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph", "//mediapipe/tasks/cc/vision/gesture_recognizer:gesture_recognizer_graph",
"//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph", "//mediapipe/tasks/cc/vision/image_classifier:image_classifier_graph",
"//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph", "//mediapipe/tasks/cc/vision/image_embedder:image_embedder_graph",
@ -235,6 +236,7 @@ android_library(
android_library( android_library(
name = "facedetector", name = "facedetector",
srcs = [ srcs = [
"facedetector/FaceDetector.java",
"facedetector/FaceDetectorResult.java", "facedetector/FaceDetectorResult.java",
], ],
javacopts = [ javacopts = [
@ -245,7 +247,10 @@ android_library(
":core", ":core",
"//mediapipe/framework:calculator_options_java_proto_lite", "//mediapipe/framework:calculator_options_java_proto_lite",
"//mediapipe/framework/formats:detection_java_proto_lite", "//mediapipe/framework/formats:detection_java_proto_lite",
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
"//mediapipe/java/com/google/mediapipe/framework/image",
"//mediapipe/tasks/cc/core/proto:base_options_java_proto_lite", "//mediapipe/tasks/cc/core/proto:base_options_java_proto_lite",
"//mediapipe/tasks/cc/vision/face_detector/proto:face_detector_graph_options_java_proto_lite",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:detection", "//mediapipe/tasks/java/com/google/mediapipe/tasks/components/containers:detection",
"//mediapipe/tasks/java/com/google/mediapipe/tasks/core", "//mediapipe/tasks/java/com/google/mediapipe/tasks/core",
"//third_party:autovalue", "//third_party:autovalue",

View File

@ -0,0 +1,463 @@
// Copyright 2023 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.facedetector;
import android.content.Context;
import android.os.ParcelFileDescriptor;
import com.google.auto.value.AutoValue;
import com.google.mediapipe.proto.CalculatorOptionsProto.CalculatorOptions;
import com.google.mediapipe.framework.AndroidPacketGetter;
import com.google.mediapipe.framework.Packet;
import com.google.mediapipe.framework.PacketGetter;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.core.ErrorListener;
import com.google.mediapipe.tasks.core.OutputHandler;
import com.google.mediapipe.tasks.core.OutputHandler.ResultListener;
import com.google.mediapipe.tasks.core.TaskInfo;
import com.google.mediapipe.tasks.core.TaskOptions;
import com.google.mediapipe.tasks.core.TaskRunner;
import com.google.mediapipe.tasks.core.proto.BaseOptionsProto;
import com.google.mediapipe.tasks.vision.core.BaseVisionTaskApi;
import com.google.mediapipe.tasks.vision.core.ImageProcessingOptions;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.facedetector.proto.FaceDetectorGraphOptionsProto;
import com.google.mediapipe.formats.proto.DetectionProto.Detection;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Optional;
/**
* Performs face detection on images.
*
* <p>The API expects a TFLite model with <a
* href="https://www.tensorflow.org/lite/convert/metadata">TFLite Model Metadata.</a>.
*
* <ul>
* <li>Input image {@link MPImage}
* <ul>
* <li>The image that the face detector runs on.
* </ul>
* <li>Output FaceDetectorResult {@link FaceDetectorResult}
* <ul>
* <li>A FaceDetectorResult containing detected faces.
* </ul>
* </ul>
*/
public final class FaceDetector extends BaseVisionTaskApi {
private static final String TAG = FaceDetector.class.getSimpleName();
private static final String IMAGE_IN_STREAM_NAME = "image_in";
private static final String NORM_RECT_IN_STREAM_NAME = "norm_rect_in";
@SuppressWarnings("ConstantCaseForConstants")
private static final List<String> INPUT_STREAMS =
Collections.unmodifiableList(
Arrays.asList("IMAGE:" + IMAGE_IN_STREAM_NAME, "NORM_RECT:" + NORM_RECT_IN_STREAM_NAME));
@SuppressWarnings("ConstantCaseForConstants")
private static final List<String> OUTPUT_STREAMS =
Collections.unmodifiableList(Arrays.asList("DETECTIONS:detections_out", "IMAGE:image_out"));
private static final int DETECTIONS_OUT_STREAM_INDEX = 0;
private static final int IMAGE_OUT_STREAM_INDEX = 1;
private static final String TASK_GRAPH_NAME =
"mediapipe.tasks.vision.face_detector.FaceDetectorGraph";
/**
* Creates a {@link FaceDetector} instance from a model file and the default {@link
* FaceDetectorOptions}.
*
* @param context an Android {@link Context}.
* @param modelPath path to the detection model with metadata in the assets.
* @throws MediaPipeException if there is an error during {@link FaceDetector} creation.
*/
public static FaceDetector createFromFile(Context context, String modelPath) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetPath(modelPath).build();
return createFromOptions(
context, FaceDetectorOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates a {@link FaceDetector} instance from a model file and the default {@link
* FaceDetectorOptions}.
*
* @param context an Android {@link Context}.
* @param modelFile the detection model {@link File} instance.
* @throws IOException if an I/O error occurs when opening the tflite model file.
* @throws MediaPipeException if there is an error during {@link FaceDetector} creation.
*/
public static FaceDetector createFromFile(Context context, File modelFile) throws IOException {
try (ParcelFileDescriptor descriptor =
ParcelFileDescriptor.open(modelFile, ParcelFileDescriptor.MODE_READ_ONLY)) {
BaseOptions baseOptions =
BaseOptions.builder().setModelAssetFileDescriptor(descriptor.getFd()).build();
return createFromOptions(
context, FaceDetectorOptions.builder().setBaseOptions(baseOptions).build());
}
}
/**
* Creates a {@link FaceDetector} instance from a model buffer and the default {@link
* FaceDetectorOptions}.
*
* @param context an Android {@link Context}.
* @param modelBuffer a direct {@link ByteBuffer} or a {@link MappedByteBuffer} of the detection
* model.
* @throws MediaPipeException if there is an error during {@link FaceDetector} creation.
*/
public static FaceDetector createFromBuffer(Context context, final ByteBuffer modelBuffer) {
BaseOptions baseOptions = BaseOptions.builder().setModelAssetBuffer(modelBuffer).build();
return createFromOptions(
context, FaceDetectorOptions.builder().setBaseOptions(baseOptions).build());
}
/**
* Creates a {@link FaceDetector} instance from a {@link FaceDetectorOptions}.
*
* @param context an Android {@link Context}.
* @param detectorOptions a {@link FaceDetectorOptions} instance.
* @throws MediaPipeException if there is an error during {@link FaceDetector} creation.
*/
public static FaceDetector createFromOptions(
Context context, FaceDetectorOptions detectorOptions) {
// TODO: Consolidate OutputHandler and TaskRunner.
OutputHandler<FaceDetectorResult, MPImage> handler = new OutputHandler<>();
handler.setOutputPacketConverter(
new OutputHandler.OutputPacketConverter<FaceDetectorResult, MPImage>() {
@Override
public FaceDetectorResult convertToTaskResult(List<Packet> packets) {
// If there is no faces detected in the image, just returns empty lists.
if (packets.get(DETECTIONS_OUT_STREAM_INDEX).isEmpty()) {
return FaceDetectorResult.create(
new ArrayList<>(),
BaseVisionTaskApi.generateResultTimestampMs(
detectorOptions.runningMode(), packets.get(DETECTIONS_OUT_STREAM_INDEX)));
}
return FaceDetectorResult.create(
PacketGetter.getProtoVector(
packets.get(DETECTIONS_OUT_STREAM_INDEX), Detection.parser()),
BaseVisionTaskApi.generateResultTimestampMs(
detectorOptions.runningMode(), packets.get(DETECTIONS_OUT_STREAM_INDEX)));
}
@Override
public MPImage convertToTaskInput(List<Packet> packets) {
return new BitmapImageBuilder(
AndroidPacketGetter.getBitmapFromRgb(packets.get(IMAGE_OUT_STREAM_INDEX)))
.build();
}
});
detectorOptions.resultListener().ifPresent(handler::setResultListener);
detectorOptions.errorListener().ifPresent(handler::setErrorListener);
TaskRunner runner =
TaskRunner.create(
context,
TaskInfo.<FaceDetectorOptions>builder()
.setTaskName(FaceDetector.class.getSimpleName())
.setTaskRunningModeName(detectorOptions.runningMode().name())
.setTaskGraphName(TASK_GRAPH_NAME)
.setInputStreams(INPUT_STREAMS)
.setOutputStreams(OUTPUT_STREAMS)
.setTaskOptions(detectorOptions)
.setEnableFlowLimiting(detectorOptions.runningMode() == RunningMode.LIVE_STREAM)
.build(),
handler);
return new FaceDetector(runner, detectorOptions.runningMode());
}
/**
* Constructor to initialize a {@link FaceDetector} from a {@link TaskRunner} and a {@link
* RunningMode}.
*
* @param taskRunner a {@link TaskRunner}.
* @param runningMode a mediapipe vision task {@link RunningMode}.
*/
private FaceDetector(TaskRunner taskRunner, RunningMode runningMode) {
super(taskRunner, runningMode, IMAGE_IN_STREAM_NAME, NORM_RECT_IN_STREAM_NAME);
}
/**
* Performs face detection on the provided single image with default image processing options,
* i.e. without any rotation applied. Only use this method when the {@link FaceDetector} is
* created with {@link RunningMode.IMAGE}.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @throws MediaPipeException if there is an internal error.
*/
public FaceDetectorResult detect(MPImage image) {
return detect(image, ImageProcessingOptions.builder().build());
}
/**
* Performs face detection on the provided single image. Only use this method when the {@link
* FaceDetector} is created with {@link RunningMode.IMAGE}.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @param imageProcessingOptions the {@link ImageProcessingOptions} specifying how to process the
* input image before running inference. Note that region-of-interest is <b>not</b> supported
* by this task: specifying {@link ImageProcessingOptions#regionOfInterest()} will result in
* this method throwing an IllegalArgumentException.
* @throws IllegalArgumentException if the {@link ImageProcessingOptions} specify a
* region-of-interest.
* @throws MediaPipeException if there is an internal error.
*/
public FaceDetectorResult detect(MPImage image, ImageProcessingOptions imageProcessingOptions) {
validateImageProcessingOptions(imageProcessingOptions);
return (FaceDetectorResult) processImageData(image, imageProcessingOptions);
}
/**
* Performs face detection on the provided video frame with default image processing options, i.e.
* without any rotation applied. Only use this method when the {@link FaceDetector} is created
* with {@link RunningMode.VIDEO}.
*
* <p>It's required to provide the video frame's timestamp (in milliseconds). The input timestamps
* must be monotonically increasing.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @param timestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public FaceDetectorResult detectForVideo(MPImage image, long timestampMs) {
return detectForVideo(image, ImageProcessingOptions.builder().build(), timestampMs);
}
/**
* Performs face detection on the provided video frame. Only use this method when the {@link
* FaceDetector} is created with {@link RunningMode.VIDEO}.
*
* <p>It's required to provide the video frame's timestamp (in milliseconds). The input timestamps
* must be monotonically increasing.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @param imageProcessingOptions the {@link ImageProcessingOptions} specifying how to process the
* input image before running inference. Note that region-of-interest is <b>not</b> supported
* by this task: specifying {@link ImageProcessingOptions#regionOfInterest()} will result in
* this method throwing an IllegalArgumentException.
* @param timestampMs the input timestamp (in milliseconds).
* @throws IllegalArgumentException if the {@link ImageProcessingOptions} specify a
* region-of-interest.
* @throws MediaPipeException if there is an internal error.
*/
public FaceDetectorResult detectForVideo(
MPImage image, ImageProcessingOptions imageProcessingOptions, long timestampMs) {
validateImageProcessingOptions(imageProcessingOptions);
return (FaceDetectorResult) processVideoData(image, imageProcessingOptions, timestampMs);
}
/**
* Sends live image data to perform face detection with default image processing options, i.e.
* without any rotation applied, and the results will be available via the {@link ResultListener}
* provided in the {@link FaceDetectorOptions}. Only use this method when the {@link FaceDetector}
* is created with {@link RunningMode.LIVE_STREAM}.
*
* <p>It's required to provide a timestamp (in milliseconds) to indicate when the input image is
* sent to the face detector. The input timestamps must be monotonically increasing.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @param timestampMs the input timestamp (in milliseconds).
* @throws MediaPipeException if there is an internal error.
*/
public void detectAsync(MPImage image, long timestampMs) {
detectAsync(image, ImageProcessingOptions.builder().build(), timestampMs);
}
/**
* Sends live image data to perform face detection, and the results will be available via the
* {@link ResultListener} provided in the {@link FaceDetectorOptions}. Only use this method when
* the {@link FaceDetector} is created with {@link RunningMode.LIVE_STREAM}.
*
* <p>It's required to provide a timestamp (in milliseconds) to indicate when the input image is
* sent to the face detector. The input timestamps must be monotonically increasing.
*
* <p>{@link FaceDetector} supports the following color space types:
*
* <ul>
* <li>{@link Bitmap.Config.ARGB_8888}
* </ul>
*
* @param image a MediaPipe {@link MPImage} object for processing.
* @param imageProcessingOptions the {@link ImageProcessingOptions} specifying how to process the
* input image before running inference. Note that region-of-interest is <b>not</b> supported
* by this task: specifying {@link ImageProcessingOptions#regionOfInterest()} will result in
* this method throwing an IllegalArgumentException.
* @param timestampMs the input timestamp (in milliseconds).
* @throws IllegalArgumentException if the {@link ImageProcessingOptions} specify a
* region-of-interest.
* @throws MediaPipeException if there is an internal error.
*/
public void detectAsync(
MPImage image, ImageProcessingOptions imageProcessingOptions, long timestampMs) {
validateImageProcessingOptions(imageProcessingOptions);
sendLiveStreamData(image, imageProcessingOptions, timestampMs);
}
/** Options for setting up a {@link FaceDetector}. */
@AutoValue
public abstract static class FaceDetectorOptions extends TaskOptions {
/** Builder for {@link FaceDetectorOptions}. */
@AutoValue.Builder
public abstract static class Builder {
/** Sets the {@link BaseOptions} for the face detector task. */
public abstract Builder setBaseOptions(BaseOptions value);
/**
* Sets the {@link RunningMode} for the face detector task. Default to the image mode. face
* detector has three modes:
*
* <ul>
* <li>IMAGE: The mode for detecting faces on single image inputs.
* <li>VIDEO: The mode for detecting faces on the decoded frames of a video.
* <li>LIVE_STREAM: The mode for for detecting faces on a live stream of input data, such as
* from camera. In this mode, {@code setResultListener} must be called to set up a
* listener to receive the detection results asynchronously.
* </ul>
*/
public abstract Builder setRunningMode(RunningMode value);
/**
* Sets the minimum confidence score for the face detection to be considered successful. The
* default minDetectionConfidence is 0.5.
*/
public abstract Builder setMinDetectionConfidence(Float value);
/**
* Sets the minimum non-maximum-suppression threshold for face detection to be considered
* overlapped. The default minSuppressionThreshold is 0.3.
*/
public abstract Builder setMinSuppressionThreshold(Float value);
/**
* Sets the {@link ResultListener} to receive the detection results asynchronously when the
* face detector is in the live stream mode.
*/
public abstract Builder setResultListener(ResultListener<FaceDetectorResult, MPImage> value);
/** Sets an optional {@link ErrorListener}}. */
public abstract Builder setErrorListener(ErrorListener value);
abstract FaceDetectorOptions autoBuild();
/**
* Validates and builds the {@link FaceDetectorOptions} instance.
*
* @throws IllegalArgumentException if the result listener and the running mode are not
* properly configured. The result listener should only be set when the face detector is
* in the live stream mode.
*/
public final FaceDetectorOptions build() {
FaceDetectorOptions options = autoBuild();
if (options.runningMode() == RunningMode.LIVE_STREAM) {
if (!options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The face detector is in the live stream mode, a user-defined result listener"
+ " must be provided in FaceDetectorOptions.");
}
} else if (options.resultListener().isPresent()) {
throw new IllegalArgumentException(
"The face detector is in the image or the video mode, a user-defined result"
+ " listener shouldn't be provided in FaceDetectorOptions.");
}
return options;
}
}
abstract BaseOptions baseOptions();
abstract RunningMode runningMode();
abstract float minDetectionConfidence();
abstract float minSuppressionThreshold();
abstract Optional<ResultListener<FaceDetectorResult, MPImage>> resultListener();
abstract Optional<ErrorListener> errorListener();
public static Builder builder() {
return new AutoValue_FaceDetector_FaceDetectorOptions.Builder()
.setRunningMode(RunningMode.IMAGE)
.setMinDetectionConfidence(0.5f)
.setMinSuppressionThreshold(0.3f);
}
/** Converts a {@link FaceDetectorOptions} to a {@link CalculatorOptions} protobuf message. */
@Override
public CalculatorOptions convertToCalculatorOptionsProto() {
BaseOptionsProto.BaseOptions.Builder baseOptionsBuilder =
BaseOptionsProto.BaseOptions.newBuilder();
baseOptionsBuilder.setUseStreamMode(runningMode() != RunningMode.IMAGE);
baseOptionsBuilder.mergeFrom(convertBaseOptionsToProto(baseOptions()));
FaceDetectorGraphOptionsProto.FaceDetectorGraphOptions.Builder taskOptionsBuilder =
FaceDetectorGraphOptionsProto.FaceDetectorGraphOptions.newBuilder()
.setBaseOptions(baseOptionsBuilder);
taskOptionsBuilder.setMinDetectionConfidence(minDetectionConfidence());
taskOptionsBuilder.setMinSuppressionThreshold(minSuppressionThreshold());
return CalculatorOptions.newBuilder()
.setExtension(
FaceDetectorGraphOptionsProto.FaceDetectorGraphOptions.ext,
taskOptionsBuilder.build())
.build();
}
}
/**
* Validates that the provided {@link ImageProcessingOptions} doesn't contain a
* region-of-interest.
*/
private static void validateImageProcessingOptions(
ImageProcessingOptions imageProcessingOptions) {
if (imageProcessingOptions.regionOfInterest().isPresent()) {
throw new IllegalArgumentException("FaceDetector doesn't support region-of-interest.");
}
}
}

View File

@ -0,0 +1,24 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.google.mediapipe.tasks.vision.facedetectortest"
android:versionCode="1"
android:versionName="1.0" >
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-sdk android:minSdkVersion="24"
android:targetSdkVersion="30" />
<application
android:label="facedetectortest"
android:name="android.support.multidex.MultiDexApplication"
android:taskAffinity="">
<uses-library android:name="android.test.runner" />
</application>
<instrumentation
android:name="com.google.android.apps.common.testing.testrunner.GoogleInstrumentationTestRunner"
android:targetPackage="com.google.mediapipe.tasks.vision.facedetectortest" />
</manifest>

View File

@ -0,0 +1,19 @@
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
package(default_visibility = ["//mediapipe/tasks:internal"])
licenses(["notice"])
# TODO: Enable this in OSS

View File

@ -0,0 +1,455 @@
// Copyright 2023 The MediaPipe Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.tasks.vision.facedetector;
import static com.google.common.truth.Truth.assertThat;
import static org.junit.Assert.assertThrows;
import android.content.res.AssetManager;
import android.graphics.BitmapFactory;
import android.graphics.RectF;
import androidx.test.core.app.ApplicationProvider;
import androidx.test.ext.junit.runners.AndroidJUnit4;
import com.google.mediapipe.framework.MediaPipeException;
import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;
import com.google.mediapipe.tasks.components.containers.NormalizedKeypoint;
import com.google.mediapipe.tasks.core.BaseOptions;
import com.google.mediapipe.tasks.core.TestUtils;
import com.google.mediapipe.tasks.vision.core.ImageProcessingOptions;
import com.google.mediapipe.tasks.vision.core.RunningMode;
import com.google.mediapipe.tasks.vision.facedetector.FaceDetector.FaceDetectorOptions;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;
/** Test for {@link FaceDetector}. */
@RunWith(Suite.class)
@SuiteClasses({FaceDetectorTest.General.class, FaceDetectorTest.RunningModeTest.class})
public class FaceDetectorTest {
private static final String MODEL_FILE = "face_detection_short_range.tflite";
private static final String CAT_IMAGE = "cat.jpg";
private static final String PORTRAIT_IMAGE = "portrait.jpg";
private static final String PORTRAIT_ROTATED_IMAGE = "portrait_rotated.jpg";
private static final float KEYPOINTS_DIFF_TOLERANCE = 0.01f;
private static final float PIXEL_DIFF_TOLERANCE = 5.0f;
private static final RectF PORTRAIT_FACE_BOUNDING_BOX = new RectF(283, 115, 514, 349);
private static final List<NormalizedKeypoint> PORTRAIT_FACE_KEYPOINTS =
Collections.unmodifiableList(
Arrays.asList(
NormalizedKeypoint.create(0.44416f, 0.17643f),
NormalizedKeypoint.create(0.55514f, 0.17731f),
NormalizedKeypoint.create(0.50467f, 0.22657f),
NormalizedKeypoint.create(0.50227f, 0.27199f),
NormalizedKeypoint.create(0.36063f, 0.20143f),
NormalizedKeypoint.create(0.60841f, 0.20409f)));
private static final RectF PORTRAIT_ROTATED_FACE_BOUNDING_BOX = new RectF(674, 283, 910, 519);
private static final List<NormalizedKeypoint> PORTRAIT_ROTATED_FACE_KEYPOINTS =
Collections.unmodifiableList(
Arrays.asList(
NormalizedKeypoint.create(0.82075f, 0.44679f),
NormalizedKeypoint.create(0.81965f, 0.56261f),
NormalizedKeypoint.create(0.76194f, 0.51719f),
NormalizedKeypoint.create(0.71993f, 0.51360f),
NormalizedKeypoint.create(0.80700f, 0.36298f),
NormalizedKeypoint.create(0.80882f, 0.61204f)));
@RunWith(AndroidJUnit4.class)
public static final class General extends FaceDetectorTest {
@Test
public void detect_successWithValidModels() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
@Test
public void detect_succeedsWithMinDetectionConfidence() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setMinDetectionConfidence(1.0f)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
// Set minDetectionConfidence to 1.0, so the detected face should be all filtered out.
assertThat(results.detections().isEmpty()).isTrue();
}
@Test
public void detect_succeedsWithEmptyFace() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setMinDetectionConfidence(1.0f)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(CAT_IMAGE));
assertThat(results.detections().isEmpty()).isTrue();
}
@Test
public void detect_succeedsWithModelFileObject() throws Exception {
FaceDetector faceDetector =
FaceDetector.createFromFile(
ApplicationProvider.getApplicationContext(),
TestUtils.loadFile(ApplicationProvider.getApplicationContext(), MODEL_FILE));
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
@Test
public void detect_succeedsWithModelBuffer() throws Exception {
FaceDetector faceDetector =
FaceDetector.createFromBuffer(
ApplicationProvider.getApplicationContext(),
TestUtils.loadToDirectByteBuffer(
ApplicationProvider.getApplicationContext(), MODEL_FILE));
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
@Test
public void detect_succeedsWithModelBufferAndOptions() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(
BaseOptions.builder()
.setModelAssetBuffer(
TestUtils.loadToDirectByteBuffer(
ApplicationProvider.getApplicationContext(), MODEL_FILE))
.build())
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
@Test
public void create_failsWithMissingModel() throws Exception {
String nonexistentFile = "/path/to/non/existent/file";
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() ->
FaceDetector.createFromFile(
ApplicationProvider.getApplicationContext(), nonexistentFile));
assertThat(exception).hasMessageThat().contains(nonexistentFile);
}
@Test
public void create_failsWithInvalidModelBuffer() throws Exception {
// Create a non-direct model ByteBuffer.
ByteBuffer modelBuffer =
TestUtils.loadToNonDirectByteBuffer(
ApplicationProvider.getApplicationContext(), MODEL_FILE);
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
FaceDetector.createFromBuffer(
ApplicationProvider.getApplicationContext(), modelBuffer));
assertThat(exception)
.hasMessageThat()
.contains("The model buffer should be either a direct ByteBuffer or a MappedByteBuffer.");
}
@Test
public void detect_succeedsWithRotation() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageProcessingOptions imageProcessingOptions =
ImageProcessingOptions.builder().setRotationDegrees(-90).build();
FaceDetectorResult results =
faceDetector.detect(getImageFromAsset(PORTRAIT_ROTATED_IMAGE), imageProcessingOptions);
assertContainsSinglePortraitFace(
results, PORTRAIT_ROTATED_FACE_BOUNDING_BOX, PORTRAIT_ROTATED_FACE_KEYPOINTS);
}
@Test
public void detect_failsWithRegionOfInterest() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
ImageProcessingOptions imageProcessingOptions =
ImageProcessingOptions.builder().setRegionOfInterest(new RectF(0, 0, 1, 1)).build();
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() -> faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE), imageProcessingOptions));
assertThat(exception)
.hasMessageThat()
.contains("FaceDetector doesn't support region-of-interest");
}
}
@RunWith(AndroidJUnit4.class)
public static final class RunningModeTest extends FaceDetectorTest {
@Test
public void create_failsWithIllegalResultListenerInNonLiveStreamMode() throws Exception {
for (RunningMode mode : new RunningMode[] {RunningMode.IMAGE, RunningMode.VIDEO}) {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(mode)
.setResultListener((faceDetectorResult, inputImage) -> {})
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener shouldn't be provided");
}
}
@Test
public void create_failsWithMissingResultListenerInLiveSteamMode() throws Exception {
IllegalArgumentException exception =
assertThrows(
IllegalArgumentException.class,
() ->
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.build());
assertThat(exception)
.hasMessageThat()
.contains("a user-defined result listener must be provided");
}
@Test
public void detect_failsWithCallingWrongApiInImageMode() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.IMAGE)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() ->
faceDetector.detectForVideo(
getImageFromAsset(PORTRAIT_IMAGE), /* timestampsMs= */ 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
exception =
assertThrows(
MediaPipeException.class,
() ->
faceDetector.detectAsync(
getImageFromAsset(PORTRAIT_IMAGE), /* timestampsMs= */ 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void detect_failsWithCallingWrongApiInVideoMode() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.VIDEO)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() ->
faceDetector.detectAsync(
getImageFromAsset(PORTRAIT_IMAGE), /* timestampsMs= */ 0));
assertThat(exception).hasMessageThat().contains("not initialized with the live stream mode");
}
@Test
public void detect_failsWithCallingWrongApiInLiveSteamMode() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener((faceDetectorResult, inputImage) -> {})
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE)));
assertThat(exception).hasMessageThat().contains("not initialized with the image mode");
exception =
assertThrows(
MediaPipeException.class,
() ->
faceDetector.detectForVideo(
getImageFromAsset(PORTRAIT_IMAGE), /* timestampsMs= */ 0));
assertThat(exception).hasMessageThat().contains("not initialized with the video mode");
}
@Test
public void detect_successWithImageMode() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.IMAGE)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
FaceDetectorResult results = faceDetector.detect(getImageFromAsset(PORTRAIT_IMAGE));
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
@Test
public void detect_successWithVideoMode() throws Exception {
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.VIDEO)
.build();
FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options);
for (int i = 0; i < 3; i++) {
FaceDetectorResult results =
faceDetector.detectForVideo(getImageFromAsset(PORTRAIT_IMAGE), /* timestampsMs= */ i);
assertContainsSinglePortraitFace(
results, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
}
}
@Test
public void detect_failsWithOutOfOrderInputTimestamps() throws Exception {
MPImage image = getImageFromAsset(PORTRAIT_IMAGE);
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(faceDetectorResult, inputImage) -> {
assertContainsSinglePortraitFace(
faceDetectorResult, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
})
.build();
try (FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
faceDetector.detectAsync(image, /* timestampsMs= */ 1);
MediaPipeException exception =
assertThrows(
MediaPipeException.class,
() -> faceDetector.detectAsync(image, /* timestampsMs= */ 0));
assertThat(exception)
.hasMessageThat()
.contains("having a smaller timestamp than the processed timestamp");
}
}
@Test
public void detect_successWithLiveSteamMode() throws Exception {
MPImage image = getImageFromAsset(PORTRAIT_IMAGE);
FaceDetectorOptions options =
FaceDetectorOptions.builder()
.setBaseOptions(BaseOptions.builder().setModelAssetPath(MODEL_FILE).build())
.setRunningMode(RunningMode.LIVE_STREAM)
.setResultListener(
(faceDetectorResult, inputImage) -> {
assertContainsSinglePortraitFace(
faceDetectorResult, PORTRAIT_FACE_BOUNDING_BOX, PORTRAIT_FACE_KEYPOINTS);
})
.build();
try (FaceDetector faceDetector =
FaceDetector.createFromOptions(ApplicationProvider.getApplicationContext(), options)) {
for (int i = 0; i < 3; i++) {
faceDetector.detectAsync(image, /* timestampsMs= */ i);
}
}
}
}
private static MPImage getImageFromAsset(String filePath) throws Exception {
AssetManager assetManager = ApplicationProvider.getApplicationContext().getAssets();
InputStream istr = assetManager.open(filePath);
return new BitmapImageBuilder(BitmapFactory.decodeStream(istr)).build();
}
private static void assertContainsSinglePortraitFace(
FaceDetectorResult results,
RectF expectedboundingBox,
List<NormalizedKeypoint> expectedKeypoints) {
assertThat(results.detections()).hasSize(1);
assertApproximatelyEqualBoundingBoxes(
results.detections().get(0).boundingBox(), expectedboundingBox);
assertThat(results.detections().get(0).keypoints().isPresent()).isTrue();
assertApproximatelyEqualKeypoints(
results.detections().get(0).keypoints().get(), expectedKeypoints);
}
private static void assertApproximatelyEqualBoundingBoxes(
RectF boundingBox1, RectF boundingBox2) {
assertThat(boundingBox1.left).isWithin(PIXEL_DIFF_TOLERANCE).of(boundingBox2.left);
assertThat(boundingBox1.top).isWithin(PIXEL_DIFF_TOLERANCE).of(boundingBox2.top);
assertThat(boundingBox1.right).isWithin(PIXEL_DIFF_TOLERANCE).of(boundingBox2.right);
assertThat(boundingBox1.bottom).isWithin(PIXEL_DIFF_TOLERANCE).of(boundingBox2.bottom);
}
private static void assertApproximatelyEqualKeypoints(
List<NormalizedKeypoint> keypoints1, List<NormalizedKeypoint> keypoints2) {
assertThat(keypoints1.size()).isEqualTo(keypoints2.size());
for (int i = 0; i < keypoints1.size(); i++) {
assertThat(keypoints1.get(i).x())
.isWithin(KEYPOINTS_DIFF_TOLERANCE)
.of(keypoints2.get(i).x());
assertThat(keypoints1.get(i).y())
.isWithin(KEYPOINTS_DIFF_TOLERANCE)
.of(keypoints2.get(i).y());
}
}
}