face detection和landmark支持onnxruntime的cuda和tensorrt

This commit is contained in:
liuyulvv 2022-08-12 09:18:10 +08:00
parent a440427bb2
commit 12046fcf89
22 changed files with 1907 additions and 1 deletions

View File

@ -24,6 +24,46 @@ cc_binary(
], ],
) )
cc_binary(
name = "face_detection_full_range_cpu_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:face_detection_full_range_desktop_live_deps",
],
)
cc_binary(
name = "face_detection_full_range_onnx_cuda",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/face_detection:face_detection_full_range_desktop_live_onnx_cuda_deps",
],
)
cc_binary(
name = "face_detection_full_range_onnx_cuda_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:face_detection_full_range_desktop_live_onnx_cuda_deps",
],
)
cc_binary(
name = "face_detection_full_range_onnx_tensorrt",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/face_detection:face_detection_full_range_desktop_live_onnx_tensorrt_deps",
],
)
cc_binary(
name = "face_detection_full_range_onnx_tensorrt_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:face_detection_full_range_desktop_live_onnx_tensorrt_deps",
],
)
cc_binary( cc_binary(
name = "face_detection_cpu", name = "face_detection_cpu",
deps = [ deps = [
@ -32,6 +72,46 @@ cc_binary(
], ],
) )
cc_binary(
name = "face_detection_cpu_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:desktop_live_calculators",
],
)
cc_binary(
name = "face_detection_onnx_cuda",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/face_detection:desktop_live_onnx_cuda_calculators",
],
)
cc_binary(
name = "face_detection_onnx_cuda_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:desktop_live_onnx_cuda_calculators",
],
)
cc_binary(
name = "face_detection_onnx_tensorrt",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/face_detection:desktop_live_onnx_tensorrt_calculators",
],
)
cc_binary(
name = "face_detection_onnx_tensorrt_fps",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main_fps",
"//mediapipe/graphs/face_detection:desktop_live_onnx_tensorrt_calculators",
],
)
# Linux only # Linux only
cc_binary( cc_binary(
name = "face_detection_gpu", name = "face_detection_gpu",

View File

@ -43,6 +43,26 @@ cc_library(
], ],
) )
cc_library(
name = "desktop_live_onnx_cuda_calculators",
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/util:annotation_overlay_calculator",
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/modules/face_detection:face_detection_short_range_onnx_cuda",
],
)
cc_library(
name = "desktop_live_onnx_tensorrt_calculators",
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/util:annotation_overlay_calculator",
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/modules/face_detection:face_detection_short_range_onnx_tensorrt",
],
)
cc_library( cc_library(
name = "desktop_live_gpu_calculators", name = "desktop_live_gpu_calculators",
deps = [ deps = [
@ -93,3 +113,23 @@ cc_library(
"//mediapipe/modules/face_detection:face_detection_full_range_cpu", "//mediapipe/modules/face_detection:face_detection_full_range_cpu",
], ],
) )
cc_library(
name = "face_detection_full_range_desktop_live_onnx_cuda_deps",
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/util:annotation_overlay_calculator",
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/modules/face_detection:face_detection_full_range_onnx_cuda",
],
)
cc_library(
name = "face_detection_full_range_desktop_live_onnx_tensorrt_deps",
deps = [
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/calculators/util:annotation_overlay_calculator",
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/modules/face_detection:face_detection_full_range_onnx_tensorrt",
],
)

View File

@ -0,0 +1,58 @@
# MediaPipe graph that performs face mesh with onnxruntime cuda.
# CPU buffer. (ImageFrame)
input_stream: "input_video"
# Output image with rendered results. (ImageFrame)
output_stream: "output_video"
# Detected faces. (std::vector<Detection>)
output_stream: "face_detections"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Subgraph that detects faces.
node {
calculator: "FaceDetectionShortRangeOnnxCUDA"
input_stream: "IMAGE:throttled_input_video"
output_stream: "DETECTIONS:face_detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:face_detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:throttled_input_video"
input_stream: "render_data"
output_stream: "IMAGE:output_video"
}

View File

@ -0,0 +1,58 @@
# MediaPipe graph that performs face mesh with onnxruntime tensorrt.
# CPU buffer. (ImageFrame)
input_stream: "input_video"
# Output image with rendered results. (ImageFrame)
output_stream: "output_video"
# Detected faces. (std::vector<Detection>)
output_stream: "face_detections"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Subgraph that detects faces.
node {
calculator: "FaceDetectionShortRangeOnnxTensorRT"
input_stream: "IMAGE:throttled_input_video"
output_stream: "DETECTIONS:face_detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:face_detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:throttled_input_video"
input_stream: "render_data"
output_stream: "IMAGE:output_video"
}

View File

@ -0,0 +1,58 @@
# MediaPipe graph that performs face detection with onnxruntime on cuda.
# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for
# TfLiteTensorsToDetectionsCalculator downstream in the graph to finish
# generating the corresponding detections before it passes through another
# image. All images that come in while waiting are dropped, limiting the number
# of in-flight images between this calculator and
# TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between
# from queuing up incoming images and data excessively, which leads to increased
# latency and memory usage, unwanted in real-time mobile applications. It also
# eliminates unnecessarily computation, e.g., a transformed image produced by
# ImageTransformationCalculator may get dropped downstream if the subsequent
# TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy
# processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:detections"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Detects faces.
node {
calculator: "FaceDetectionFullRangeOnnxCUDA"
input_stream: "IMAGE:throttled_input_video"
output_stream: "DETECTIONS:detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:throttled_input_video"
input_stream: "render_data"
output_stream: "IMAGE:output_video"
}

View File

@ -0,0 +1,58 @@
# MediaPipe graph that performs face detection with onnxruntime on tensorrt.
# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for
# TfLiteTensorsToDetectionsCalculator downstream in the graph to finish
# generating the corresponding detections before it passes through another
# image. All images that come in while waiting are dropped, limiting the number
# of in-flight images between this calculator and
# TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between
# from queuing up incoming images and data excessively, which leads to increased
# latency and memory usage, unwanted in real-time mobile applications. It also
# eliminates unnecessarily computation, e.g., a transformed image produced by
# ImageTransformationCalculator may get dropped downstream if the subsequent
# TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy
# processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:detections"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Detects faces.
node {
calculator: "FaceDetectionFullRangeOnnxTensorRT"
input_stream: "IMAGE:throttled_input_video"
output_stream: "DETECTIONS:detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:throttled_input_video"
input_stream: "render_data"
output_stream: "IMAGE:output_video"
}

View File

@ -17,7 +17,7 @@ load(
"mediapipe_simple_subgraph", "mediapipe_simple_subgraph",
) )
load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library") load("//mediapipe/framework/port:build_config.bzl", "mediapipe_proto_library")
load("//mediapipe/framework:mediapipe_cc_test.bzl", "mediapipe_cc_test") load("//mediapipe/framework:mediapipe_cc_test.bzl", "mediapipe_cc_test") #@unused
licenses(["notice"]) licenses(["notice"])
@ -35,6 +35,24 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_detection_short_range_by_roi_onnx_cuda",
graph = "face_detection_short_range_by_roi_onnx_cuda.pbtxt",
register_as = "FaceDetectionShortRangeByRoiOnnxCUDA",
deps = [
":face_detection_short_range_onnx_cuda",
],
)
mediapipe_simple_subgraph(
name = "face_detection_short_range_by_roi_onnx_tensorrt",
graph = "face_detection_short_range_by_roi_onnx_tensorrt.pbtxt",
register_as = "FaceDetectionShortRangeByRoiOnnxTensorRT",
deps = [
":face_detection_short_range_onnx_tensorrt",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_detection_short_range_by_roi_gpu", name = "face_detection_short_range_by_roi_gpu",
graph = "face_detection_short_range_by_roi_gpu.pbtxt", graph = "face_detection_short_range_by_roi_gpu.pbtxt",
@ -74,6 +92,24 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_detection_short_range_onnx_cuda",
graph = "face_detection_short_range_onnx_cuda.pbtxt",
register_as = "FaceDetectionShortRangeOnnxCUDA",
deps = [
":face_detection_onnx_cuda",
],
)
mediapipe_simple_subgraph(
name = "face_detection_short_range_onnx_tensorrt",
graph = "face_detection_short_range_onnx_tensorrt.pbtxt",
register_as = "FaceDetectionShortRangeOnnxTensorRT",
deps = [
":face_detection_onnx_tensorrt",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_detection_full_range", name = "face_detection_full_range",
graph = "face_detection_full_range.pbtxt", graph = "face_detection_full_range.pbtxt",
@ -83,6 +119,24 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_detection_full_range_onnx_cuda",
graph = "face_detection_full_range_onnx_cuda.pbtxt",
register_as = "FaceDetectionFullRangeOnnxCUDA",
deps = [
":face_detection_onnx_cuda",
],
)
mediapipe_simple_subgraph(
name = "face_detection_full_range_onnx_tensorrt",
graph = "face_detection_full_range_onnx_tensorrt.pbtxt",
register_as = "FaceDetectionFullRangeOnnxTensorRT",
deps = [
":face_detection_onnx_tensorrt",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_detection_without_roi", name = "face_detection_without_roi",
graph = "face_detection_without_roi.pbtxt", graph = "face_detection_without_roi.pbtxt",
@ -110,6 +164,42 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_detection_onnx_cuda",
graph = "face_detection_onnx_cuda.pbtxt",
register_as = "FaceDetectionOnnxCUDA",
deps = [
":face_detection_cc_proto",
":face_detection_options_lib",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
"//mediapipe/calculators/tensor:inference_calculator_onnx_cuda",
"//mediapipe/calculators/tensor:tensors_to_detections_calculator",
"//mediapipe/calculators/tflite:ssd_anchors_calculator",
"//mediapipe/calculators/util:detection_projection_calculator",
"//mediapipe/calculators/util:non_max_suppression_calculator",
"//mediapipe/calculators/util:to_image_calculator",
],
)
mediapipe_simple_subgraph(
name = "face_detection_onnx_tensorrt",
graph = "face_detection_onnx_tensorrt.pbtxt",
register_as = "FaceDetectionOnnxTensorRT",
deps = [
":face_detection_cc_proto",
":face_detection_options_lib",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
"//mediapipe/calculators/tensor:inference_calculator_onnx_tensorrt",
"//mediapipe/calculators/tensor:tensors_to_detections_calculator",
"//mediapipe/calculators/tflite:ssd_anchors_calculator",
"//mediapipe/calculators/util:detection_projection_calculator",
"//mediapipe/calculators/util:non_max_suppression_calculator",
"//mediapipe/calculators/util:to_image_calculator",
],
)
mediapipe_proto_library( mediapipe_proto_library(
name = "face_detection_proto", name = "face_detection_proto",
srcs = ["face_detection.proto"], srcs = ["face_detection.proto"],
@ -168,8 +258,11 @@ mediapipe_simple_subgraph(
exports_files( exports_files(
srcs = [ srcs = [
"face_detection_full_range.onnx",
"face_detection_full_range.tflite", "face_detection_full_range.tflite",
"face_detection_full_range_sparse.onnx",
"face_detection_full_range_sparse.tflite", "face_detection_full_range_sparse.tflite",
"face_detection_short_range.onnx",
"face_detection_short_range.tflite", "face_detection_short_range.tflite",
], ],
) )

View File

@ -0,0 +1,37 @@
type: "FaceDetectionFullRangeOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_full_range.onnx"
tensor_width: 192
tensor_height: 192
num_layers: 1
strides: 4
interpolated_scale_aspect_ratio: 0.0
num_boxes: 2304
x_scale: 192.0
y_scale: 192.0
h_scale: 192.0
w_scale: 192.0
min_score_thresh: 0.6
}
}
option_value: "OPTIONS:options"
}

View File

@ -0,0 +1,37 @@
type: "FaceDetectionFullRangeOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_full_range.onnx"
tensor_width: 192
tensor_height: 192
num_layers: 1
strides: 4
interpolated_scale_aspect_ratio: 0.0
num_boxes: 2304
x_scale: 192.0
y_scale: 192.0
h_scale: 192.0
w_scale: 192.0
min_score_thresh: 0.6
}
}
option_value: "OPTIONS:options"
}

View File

@ -0,0 +1,155 @@
type: "FaceDetectionOnnxCUDA"
# The input image, either ImageFrame, GpuBuffer, or (multi-backend) Image.
input_stream: "IMAGE:image"
# ROI (region of interest) within the given image where faces should be
# detected. (NormalizedRect)
input_stream: "ROI:roi"
# Detected faces. (std::vector<Detection>)
# NOTE: there will not be an output packet in the DETECTIONS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
# Converts the input CPU or GPU image to the multi-backend image type (Image).
node: {
calculator: "ToImageCalculator"
input_stream: "IMAGE:image"
output_stream: "IMAGE:multi_backend_image"
}
# Transforms the input image into a 128x128 tensor while keeping the aspect
# ratio (what is expected by the corresponding face detection model), resulting
# in potential letterboxing in the transformed image.
node: {
calculator: "ImageToTensorCalculator"
input_stream: "IMAGE:multi_backend_image"
input_stream: "NORM_RECT:roi"
output_stream: "TENSORS:input_tensors"
output_stream: "MATRIX:transform_matrix"
options: {
[mediapipe.ImageToTensorCalculatorOptions.ext] {
keep_aspect_ratio: true
output_tensor_float_range {
min: -1.0
max: 1.0
}
border_mode: BORDER_ZERO
}
}
option_value: "gpu_origin:options/gpu_origin"
option_value: "output_tensor_width:options/tensor_width"
option_value: "output_tensor_height:options/tensor_height"
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:detection_tensors"
options: {
[mediapipe.InferenceCalculatorOptions.ext] {
delegate { cuda {} }
}
}
option_value: "model_path:options/model_path"
}
# Detection tensors. (std::vector<Tensor>)
#input_stream: "TENSORS:detection_tensors"
# A 4x4 row-major-order matrix that maps a point represented in the detection
# tensors to a desired coordinate system, e.g., in the original input image
# before scaling/cropping. (std::array<float, 16>)
#input_stream: "MATRIX:transform_matrix"
# Detected faces. (std::vector<Detection>)
# NOTE: there will not be an output packet in the DETECTIONS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
#output_stream: "DETECTIONS:detections"
# Generates a single side packet containing a vector of SSD anchors based on
# the specification in the options.
node {
calculator: "SsdAnchorsCalculator"
output_side_packet: "anchors"
options: {
[mediapipe.SsdAnchorsCalculatorOptions.ext] {
num_layers: 1
min_scale: 0.1484375
max_scale: 0.75
anchor_offset_x: 0.5
anchor_offset_y: 0.5
aspect_ratios: 1.0
fixed_anchor_size: true
}
}
option_value: "input_size_width:tensor_width"
option_value: "input_size_height:tensor_height"
option_value: "num_layers:num_layers"
option_value: "strides:strides"
option_value: "interpolated_scale_aspect_ratio:interpolated_scale_aspect_ratio"
}
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
# the SSD anchors and the specification in the options, into a vector of
# detections. Each detection describes a detected object.
node {
calculator: "TensorsToDetectionsCalculator"
input_stream: "TENSORS:detection_tensors"
input_side_packet: "ANCHORS:anchors"
output_stream: "DETECTIONS:unfiltered_detections"
options: {
[mediapipe.TensorsToDetectionsCalculatorOptions.ext] {
num_classes: 1
num_coords: 16
box_coord_offset: 0
keypoint_coord_offset: 4
num_keypoints: 6
num_values_per_keypoint: 2
sigmoid_score: true
score_clipping_thresh: 100.0
reverse_output_order: true
}
}
option_value: "num_boxes:num_boxes"
option_value: "x_scale:x_scale"
option_value: "y_scale:y_scale"
option_value: "h_scale:h_scale"
option_value: "w_scale:w_scale"
option_value: "min_score_thresh:min_score_thresh"
}
# Performs non-max suppression to remove excessive detections.
node {
calculator: "NonMaxSuppressionCalculator"
input_stream: "unfiltered_detections"
output_stream: "filtered_detections"
options: {
[mediapipe.NonMaxSuppressionCalculatorOptions.ext] {
min_suppression_threshold: 0.3
overlap_type: INTERSECTION_OVER_UNION
algorithm: WEIGHTED
}
}
}
# Projects the detections from input tensor to the corresponding locations on
# the original image (input to the graph).
node {
calculator: "DetectionProjectionCalculator"
input_stream: "DETECTIONS:filtered_detections"
input_stream: "PROJECTION_MATRIX:transform_matrix"
output_stream: "DETECTIONS:detections"
}

View File

@ -0,0 +1,165 @@
# MediaPipe graph to detect faces.
#
# EXAMPLE:
# node {
# calculator: "FaceDetectionFrontCpu"
# input_stream: "IMAGE:image"
# input_stream: "ROI:roi"
# output_stream: "DETECTIONS:face_detections"
# }
type: "FaceDetectionOnnxTensorRT"
# The input image, either ImageFrame, GpuBuffer, or (multi-backend) Image.
input_stream: "IMAGE:image"
# ROI (region of interest) within the given image where faces should be
# detected. (NormalizedRect)
input_stream: "ROI:roi"
# Detected faces. (std::vector<Detection>)
# NOTE: there will not be an output packet in the DETECTIONS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
# Converts the input CPU or GPU image to the multi-backend image type (Image).
node: {
calculator: "ToImageCalculator"
input_stream: "IMAGE:image"
output_stream: "IMAGE:multi_backend_image"
}
# Transforms the input image into a 128x128 tensor while keeping the aspect
# ratio (what is expected by the corresponding face detection model), resulting
# in potential letterboxing in the transformed image.
node: {
calculator: "ImageToTensorCalculator"
input_stream: "IMAGE:multi_backend_image"
input_stream: "NORM_RECT:roi"
output_stream: "TENSORS:input_tensors"
output_stream: "MATRIX:transform_matrix"
options: {
[mediapipe.ImageToTensorCalculatorOptions.ext] {
keep_aspect_ratio: true
output_tensor_float_range {
min: -1.0
max: 1.0
}
border_mode: BORDER_ZERO
}
}
option_value: "gpu_origin:options/gpu_origin"
option_value: "output_tensor_width:options/tensor_width"
option_value: "output_tensor_height:options/tensor_height"
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:detection_tensors"
options: {
[mediapipe.InferenceCalculatorOptions.ext] {
delegate { tensorrt {} }
}
}
option_value: "model_path:options/model_path"
}
# Detection tensors. (std::vector<Tensor>)
#input_stream: "TENSORS:detection_tensors"
# A 4x4 row-major-order matrix that maps a point represented in the detection
# tensors to a desired coordinate system, e.g., in the original input image
# before scaling/cropping. (std::array<float, 16>)
#input_stream: "MATRIX:transform_matrix"
# Detected faces. (std::vector<Detection>)
# NOTE: there will not be an output packet in the DETECTIONS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
#output_stream: "DETECTIONS:detections"
# Generates a single side packet containing a vector of SSD anchors based on
# the specification in the options.
node {
calculator: "SsdAnchorsCalculator"
output_side_packet: "anchors"
options: {
[mediapipe.SsdAnchorsCalculatorOptions.ext] {
num_layers: 1
min_scale: 0.1484375
max_scale: 0.75
anchor_offset_x: 0.5
anchor_offset_y: 0.5
aspect_ratios: 1.0
fixed_anchor_size: true
}
}
option_value: "input_size_width:tensor_width"
option_value: "input_size_height:tensor_height"
option_value: "num_layers:num_layers"
option_value: "strides:strides"
option_value: "interpolated_scale_aspect_ratio:interpolated_scale_aspect_ratio"
}
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
# the SSD anchors and the specification in the options, into a vector of
# detections. Each detection describes a detected object.
node {
calculator: "TensorsToDetectionsCalculator"
input_stream: "TENSORS:detection_tensors"
input_side_packet: "ANCHORS:anchors"
output_stream: "DETECTIONS:unfiltered_detections"
options: {
[mediapipe.TensorsToDetectionsCalculatorOptions.ext] {
num_classes: 1
num_coords: 16
box_coord_offset: 0
keypoint_coord_offset: 4
num_keypoints: 6
num_values_per_keypoint: 2
sigmoid_score: true
score_clipping_thresh: 100.0
reverse_output_order: true
}
}
option_value: "num_boxes:num_boxes"
option_value: "x_scale:x_scale"
option_value: "y_scale:y_scale"
option_value: "h_scale:h_scale"
option_value: "w_scale:w_scale"
option_value: "min_score_thresh:min_score_thresh"
}
# Performs non-max suppression to remove excessive detections.
node {
calculator: "NonMaxSuppressionCalculator"
input_stream: "unfiltered_detections"
output_stream: "filtered_detections"
options: {
[mediapipe.NonMaxSuppressionCalculatorOptions.ext] {
min_suppression_threshold: 0.3
overlap_type: INTERSECTION_OVER_UNION
algorithm: WEIGHTED
}
}
}
# Projects the detections from input tensor to the corresponding locations on
# the original image (input to the graph).
node {
calculator: "DetectionProjectionCalculator"
input_stream: "DETECTIONS:filtered_detections"
input_stream: "PROJECTION_MATRIX:transform_matrix"
output_stream: "DETECTIONS:detections"
}

View File

@ -0,0 +1,40 @@
type: "FaceDetectionShortRangeByRoiOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_short_range.onnx"
tensor_width: 128
tensor_height: 128
num_layers: 4
strides: 8
strides: 16
strides: 16
strides: 16
interpolated_scale_aspect_ratio: 1.0
num_boxes: 896
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
option_value: "OPTIONS:options"
}

View File

@ -0,0 +1,40 @@
type: "FaceDetectionShortRangeByRoiOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_short_range.onnx"
tensor_width: 128
tensor_height: 128
num_layers: 4
strides: 8
strides: 16
strides: 16
strides: 16
interpolated_scale_aspect_ratio: 1.0
num_boxes: 896
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
option_value: "OPTIONS:options"
}

View File

@ -0,0 +1,40 @@
type: "FaceDetectionShortRangeOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxCUDA"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_short_range.onnx"
tensor_width: 128
tensor_height: 128
num_layers: 4
strides: 8
strides: 16
strides: 16
strides: 16
interpolated_scale_aspect_ratio: 1.0
num_boxes: 896
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
option_value: "OPTIONS:options"
}

View File

@ -0,0 +1,40 @@
type: "FaceDetectionShortRangeOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
graph_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {}
}
node {
calculator: "FaceDetectionOnnxTensorRT"
input_stream: "IMAGE:image"
input_stream: "ROI:roi"
output_stream: "DETECTIONS:detections"
node_options: {
[type.googleapis.com/mediapipe.FaceDetectionOptions] {
model_path: "mediapipe/modules/face_detection/face_detection_short_range.onnx"
tensor_width: 128
tensor_height: 128
num_layers: 4
strides: 8
strides: 16
strides: 16
strides: 16
interpolated_scale_aspect_ratio: 1.0
num_boxes: 896
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
option_value: "OPTIONS:options"
}

View File

@ -42,6 +42,45 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_landmark_onnx_cuda",
graph = "face_landmark_onnx_cuda.pbtxt",
register_as = "FaceLandmarkOnnxCUDA",
deps = [
":tensors_to_face_landmarks",
":tensors_to_face_landmarks_with_attention",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/core:split_vector_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
"//mediapipe/calculators/tensor:inference_calculator_onnx_cuda",
"//mediapipe/calculators/tensor:tensors_to_floats_calculator",
"//mediapipe/calculators/tensor:tensors_to_landmarks_calculator",
"//mediapipe/calculators/util:landmark_projection_calculator",
"//mediapipe/calculators/util:thresholding_calculator",
"//mediapipe/framework/tool:switch_container",
],
)
mediapipe_simple_subgraph(
name = "face_landmark_onnx_tensorrt",
graph = "face_landmark_onnx_tensorrt.pbtxt",
register_as = "FaceLandmarkOnnxTensorRT",
deps = [
":tensors_to_face_landmarks",
":tensors_to_face_landmarks_with_attention",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/core:split_vector_calculator",
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
"//mediapipe/calculators/tensor:inference_calculator",
"//mediapipe/calculators/tensor:inference_calculator_onnx_tensorrt",
"//mediapipe/calculators/tensor:tensors_to_floats_calculator",
"//mediapipe/calculators/tensor:tensors_to_landmarks_calculator",
"//mediapipe/calculators/util:landmark_projection_calculator",
"//mediapipe/calculators/util:thresholding_calculator",
"//mediapipe/framework/tool:switch_container",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_landmark_gpu", name = "face_landmark_gpu",
graph = "face_landmark_gpu.pbtxt", graph = "face_landmark_gpu.pbtxt",
@ -84,6 +123,48 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_landmark_front_onnx_cuda",
graph = "face_landmark_front_onnx_cuda.pbtxt",
register_as = "FaceLandmarkFrontOnnxCUDA",
deps = [
":face_detection_front_detection_to_roi",
":face_landmark_landmarks_to_roi",
":face_landmark_onnx_cuda",
"//mediapipe/calculators/core:begin_loop_calculator",
"//mediapipe/calculators/core:clip_vector_size_calculator",
"//mediapipe/calculators/core:constant_side_packet_calculator",
"//mediapipe/calculators/core:end_loop_calculator",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/core:previous_loopback_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
"//mediapipe/calculators/util:association_norm_rect_calculator",
"//mediapipe/calculators/util:collection_has_min_size_calculator",
"//mediapipe/modules/face_detection:face_detection_short_range_onnx_cuda",
],
)
mediapipe_simple_subgraph(
name = "face_landmark_front_onnx_tensorrt",
graph = "face_landmark_front_onnx_tensorrt.pbtxt",
register_as = "FaceLandmarkFrontOnnxTensorRT",
deps = [
":face_detection_front_detection_to_roi",
":face_landmark_landmarks_to_roi",
":face_landmark_onnx_tensorrt",
"//mediapipe/calculators/core:begin_loop_calculator",
"//mediapipe/calculators/core:clip_vector_size_calculator",
"//mediapipe/calculators/core:constant_side_packet_calculator",
"//mediapipe/calculators/core:end_loop_calculator",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/core:previous_loopback_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
"//mediapipe/calculators/util:association_norm_rect_calculator",
"//mediapipe/calculators/util:collection_has_min_size_calculator",
"//mediapipe/modules/face_detection:face_detection_short_range_onnx_tensorrt",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_landmark_front_gpu", name = "face_landmark_front_gpu",
graph = "face_landmark_front_gpu.pbtxt", graph = "face_landmark_front_gpu.pbtxt",

View File

@ -0,0 +1,247 @@
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
# executed with onnxruntime on cuda.) This graph tries to skip face detection as much as possible
# by using previously detected/predicted landmarks for new images.
#
# It is required that "face_detection_short_range.onnxruntime" is available at
# "mediapipe/modules/face_detection/face_detection_short_range.onnxruntime"
# path during execution.
#
# It is required that "face_landmark.onnxruntime" is available at
# "mediapipe/modules/face_landmark/face_landmark.onnxruntime"
# path during execution if `with_attention` is not set or set to `false`.
#
# It is required that "face_landmark_with_attention.onnxruntime" is available at
# "mediapipe/modules/face_landmark/face_landmark_with_attention.onnxruntime"
# path during execution if `with_attention` is set to `true`.
#
# EXAMPLE:
# node {
# calculator: "FaceLandmarkFrontOnnxCUDA"
# input_stream: "IMAGE:image"
# input_side_packet: "NUM_FACES:num_faces"
# input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
# input_side_packet: "WITH_ATTENTION:with_attention"
# output_stream: "LANDMARKS:multi_face_landmarks"
# }
type: "FaceLandmarkFrontOnnxCUDA"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# Max number of faces to detect/track. (int)
input_side_packet: "NUM_FACES:num_faces"
# Whether landmarks on the previous image should be used to help localize
# landmarks on the current image. (bool)
input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
# Whether to run face mesh model with attention on lips and eyes. (bool)
# Attention provides more accuracy on lips and eye regions as well as iris
# landmarks.
input_side_packet: "WITH_ATTENTION:with_attention"
# Collection of detected/predicted faces, each represented as a list of 468 face
# landmarks. (std::vector<NormalizedLandmarkList>)
# NOTE: there will not be an output packet in the LANDMARKS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "LANDMARKS:multi_face_landmarks"
# Extra outputs (for debugging, for instance).
# Detected faces. (std::vector<Detection>)
output_stream: "DETECTIONS:face_detections"
# Regions of interest calculated based on landmarks.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
# Regions of interest calculated based on face detections.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
# When the optional input side packet "use_prev_landmarks" is either absent or
# set to true, uses the landmarks on the previous image to help localize
# landmarks on the current image.
node {
calculator: "GateCalculator"
input_side_packet: "ALLOW:use_prev_landmarks"
input_stream: "prev_face_rects_from_landmarks"
output_stream: "gated_prev_face_rects_from_landmarks"
options: {
[mediapipe.GateCalculatorOptions.ext] {
allow: true
}
}
}
# Determines if an input vector of NormalizedRect has a size greater than or
# equal to the provided num_faces.
node {
calculator: "NormalizedRectVectorHasMinSizeCalculator"
input_stream: "ITERABLE:gated_prev_face_rects_from_landmarks"
input_side_packet: "num_faces"
output_stream: "prev_has_enough_faces"
}
# Drops the incoming image if enough faces have already been identified from the
# previous image. Otherwise, passes the incoming image through to trigger a new
# round of face detection.
node {
calculator: "GateCalculator"
input_stream: "image"
input_stream: "DISALLOW:prev_has_enough_faces"
output_stream: "gated_image"
options: {
[mediapipe.GateCalculatorOptions.ext] {
empty_packets_as_allow: true
}
}
}
# Detects faces.
node {
calculator: "FaceDetectionShortRangeOnnxCUDA"
input_stream: "IMAGE:gated_image"
output_stream: "DETECTIONS:all_face_detections"
}
# Makes sure there are no more detections than the provided num_faces.
node {
calculator: "ClipDetectionVectorSizeCalculator"
input_stream: "all_face_detections"
output_stream: "face_detections"
input_side_packet: "num_faces"
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:gated_image"
output_stream: "SIZE:gated_image_size"
}
# Outputs each element of face_detections at a fake timestamp for the rest of
# the graph to process. Clones the image size packet for each face_detection at
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
# for downstream calculators to inform them that all elements in the vector have
# been processed.
node {
calculator: "BeginLoopDetectionCalculator"
input_stream: "ITERABLE:face_detections"
input_stream: "CLONE:gated_image_size"
output_stream: "ITEM:face_detection"
output_stream: "CLONE:detections_loop_image_size"
output_stream: "BATCH_END:detections_loop_end_timestamp"
}
# Calculates region of interest based on face detections, so that can be used
# to detect landmarks.
node {
calculator: "FaceDetectionFrontDetectionToRoi"
input_stream: "DETECTION:face_detection"
input_stream: "IMAGE_SIZE:detections_loop_image_size"
output_stream: "ROI:face_rect_from_detection"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_detection"
input_stream: "BATCH_END:detections_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_detections"
}
# Performs association between NormalizedRect vector elements from previous
# image and rects based on face detections from the current image. This
# calculator ensures that the output face_rects vector doesn't contain
# overlapping regions based on the specified min_similarity_threshold.
node {
calculator: "AssociationNormRectCalculator"
input_stream: "face_rects_from_detections"
input_stream: "gated_prev_face_rects_from_landmarks"
output_stream: "face_rects"
options: {
[mediapipe.AssociationCalculatorOptions.ext] {
min_similarity_threshold: 0.5
}
}
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:image"
output_stream: "SIZE:image_size"
}
# Outputs each element of face_rects at a fake timestamp for the rest of the
# graph to process. Clones image and image size packets for each
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
# BATCH_END timestamp for downstream calculators to inform them that all
# elements in the vector have been processed.
node {
calculator: "BeginLoopNormalizedRectCalculator"
input_stream: "ITERABLE:face_rects"
input_stream: "CLONE:0:image"
input_stream: "CLONE:1:image_size"
output_stream: "ITEM:face_rect"
output_stream: "CLONE:0:landmarks_loop_image"
output_stream: "CLONE:1:landmarks_loop_image_size"
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
}
# Detects face landmarks within specified region of interest of the image.
node {
calculator: "FaceLandmarkOnnxCUDA"
input_stream: "IMAGE:landmarks_loop_image"
input_stream: "ROI:face_rect"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:face_landmarks"
}
# Calculates region of interest based on face landmarks, so that can be reused
# for subsequent image.
node {
calculator: "FaceLandmarkLandmarksToRoi"
input_stream: "LANDMARKS:face_landmarks"
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
output_stream: "ROI:face_rect_from_landmarks"
}
# Collects a set of landmarks for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
input_stream: "ITEM:face_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:multi_face_landmarks"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_landmarks"
}
# Caches face rects calculated from landmarks, and upon the arrival of the next
# input image, sends out the cached rects with timestamps replaced by that of
# the input image, essentially generating a packet that carries the previous
# face rects. Note that upon the arrival of the very first input image, a
# timestamp bound update occurs to jump start the feedback loop.
node {
calculator: "PreviousLoopbackCalculator"
input_stream: "MAIN:image"
input_stream: "LOOP:face_rects_from_landmarks"
input_stream_info: {
tag_index: "LOOP"
back_edge: true
}
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
}

View File

@ -0,0 +1,247 @@
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
# executed with onnxruntime on tensorrt.) This graph tries to skip face detection as much as possible
# by using previously detected/predicted landmarks for new images.
#
# It is required that "face_detection_short_range.onnxruntime" is available at
# "mediapipe/modules/face_detection/face_detection_short_range.onnxruntime"
# path during execution.
#
# It is required that "face_landmark.onnxruntime" is available at
# "mediapipe/modules/face_landmark/face_landmark.onnxruntime"
# path during execution if `with_attention` is not set or set to `false`.
#
# It is required that "face_landmark_with_attention.onnxruntime" is available at
# "mediapipe/modules/face_landmark/face_landmark_with_attention.onnxruntime"
# path during execution if `with_attention` is set to `true`.
#
# EXAMPLE:
# node {
# calculator: "FaceLandmarkFrontTensorRT"
# input_stream: "IMAGE:image"
# input_side_packet: "NUM_FACES:num_faces"
# input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
# input_side_packet: "WITH_ATTENTION:with_attention"
# output_stream: "LANDMARKS:multi_face_landmarks"
# }
type: "FaceLandmarkFrontTensorRT"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# Max number of faces to detect/track. (int)
input_side_packet: "NUM_FACES:num_faces"
# Whether landmarks on the previous image should be used to help localize
# landmarks on the current image. (bool)
input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
# Whether to run face mesh model with attention on lips and eyes. (bool)
# Attention provides more accuracy on lips and eye regions as well as iris
# landmarks.
input_side_packet: "WITH_ATTENTION:with_attention"
# Collection of detected/predicted faces, each represented as a list of 468 face
# landmarks. (std::vector<NormalizedLandmarkList>)
# NOTE: there will not be an output packet in the LANDMARKS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "LANDMARKS:multi_face_landmarks"
# Extra outputs (for debugging, for instance).
# Detected faces. (std::vector<Detection>)
output_stream: "DETECTIONS:face_detections"
# Regions of interest calculated based on landmarks.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
# Regions of interest calculated based on face detections.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
# When the optional input side packet "use_prev_landmarks" is either absent or
# set to true, uses the landmarks on the previous image to help localize
# landmarks on the current image.
node {
calculator: "GateCalculator"
input_side_packet: "ALLOW:use_prev_landmarks"
input_stream: "prev_face_rects_from_landmarks"
output_stream: "gated_prev_face_rects_from_landmarks"
options: {
[mediapipe.GateCalculatorOptions.ext] {
allow: true
}
}
}
# Determines if an input vector of NormalizedRect has a size greater than or
# equal to the provided num_faces.
node {
calculator: "NormalizedRectVectorHasMinSizeCalculator"
input_stream: "ITERABLE:gated_prev_face_rects_from_landmarks"
input_side_packet: "num_faces"
output_stream: "prev_has_enough_faces"
}
# Drops the incoming image if enough faces have already been identified from the
# previous image. Otherwise, passes the incoming image through to trigger a new
# round of face detection.
node {
calculator: "GateCalculator"
input_stream: "image"
input_stream: "DISALLOW:prev_has_enough_faces"
output_stream: "gated_image"
options: {
[mediapipe.GateCalculatorOptions.ext] {
empty_packets_as_allow: true
}
}
}
# Detects faces.
node {
calculator: "FaceDetectionShortRangeOnnxTensorRT"
input_stream: "IMAGE:gated_image"
output_stream: "DETECTIONS:all_face_detections"
}
# Makes sure there are no more detections than the provided num_faces.
node {
calculator: "ClipDetectionVectorSizeCalculator"
input_stream: "all_face_detections"
output_stream: "face_detections"
input_side_packet: "num_faces"
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:gated_image"
output_stream: "SIZE:gated_image_size"
}
# Outputs each element of face_detections at a fake timestamp for the rest of
# the graph to process. Clones the image size packet for each face_detection at
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
# for downstream calculators to inform them that all elements in the vector have
# been processed.
node {
calculator: "BeginLoopDetectionCalculator"
input_stream: "ITERABLE:face_detections"
input_stream: "CLONE:gated_image_size"
output_stream: "ITEM:face_detection"
output_stream: "CLONE:detections_loop_image_size"
output_stream: "BATCH_END:detections_loop_end_timestamp"
}
# Calculates region of interest based on face detections, so that can be used
# to detect landmarks.
node {
calculator: "FaceDetectionFrontDetectionToRoi"
input_stream: "DETECTION:face_detection"
input_stream: "IMAGE_SIZE:detections_loop_image_size"
output_stream: "ROI:face_rect_from_detection"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_detection"
input_stream: "BATCH_END:detections_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_detections"
}
# Performs association between NormalizedRect vector elements from previous
# image and rects based on face detections from the current image. This
# calculator ensures that the output face_rects vector doesn't contain
# overlapping regions based on the specified min_similarity_threshold.
node {
calculator: "AssociationNormRectCalculator"
input_stream: "face_rects_from_detections"
input_stream: "gated_prev_face_rects_from_landmarks"
output_stream: "face_rects"
options: {
[mediapipe.AssociationCalculatorOptions.ext] {
min_similarity_threshold: 0.5
}
}
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:image"
output_stream: "SIZE:image_size"
}
# Outputs each element of face_rects at a fake timestamp for the rest of the
# graph to process. Clones image and image size packets for each
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
# BATCH_END timestamp for downstream calculators to inform them that all
# elements in the vector have been processed.
node {
calculator: "BeginLoopNormalizedRectCalculator"
input_stream: "ITERABLE:face_rects"
input_stream: "CLONE:0:image"
input_stream: "CLONE:1:image_size"
output_stream: "ITEM:face_rect"
output_stream: "CLONE:0:landmarks_loop_image"
output_stream: "CLONE:1:landmarks_loop_image_size"
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
}
# Detects face landmarks within specified region of interest of the image.
node {
calculator: "FaceLandmarkOnnxTensorRT"
input_stream: "IMAGE:landmarks_loop_image"
input_stream: "ROI:face_rect"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:face_landmarks"
}
# Calculates region of interest based on face landmarks, so that can be reused
# for subsequent image.
node {
calculator: "FaceLandmarkLandmarksToRoi"
input_stream: "LANDMARKS:face_landmarks"
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
output_stream: "ROI:face_rect_from_landmarks"
}
# Collects a set of landmarks for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
input_stream: "ITEM:face_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:multi_face_landmarks"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_landmarks"
}
# Caches face rects calculated from landmarks, and upon the arrival of the next
# input image, sends out the cached rects with timestamps replaced by that of
# the input image, essentially generating a packet that carries the previous
# face rects. Note that upon the arrival of the very first input image, a
# timestamp bound update occurs to jump start the feedback loop.
node {
calculator: "PreviousLoopbackCalculator"
input_stream: "MAIN:image"
input_stream: "LOOP:face_rects_from_landmarks"
input_stream_info: {
tag_index: "LOOP"
back_edge: true
}
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
}

View File

@ -0,0 +1,166 @@
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
# executed with onnxruntime on cuda.)
#
# It is required that "face_landmark.onnx" is available at
# "mediapipe/modules/face_landmark/face_landmark.onnx"
# path during execution if `with_attention` is not set or set to `false`.
#
# It is required that "face_landmark_with_attention.onnx" is available at
# "mediapipe/modules/face_landmark/face_landmark_with_attention.onnx"
# path during execution if `with_attention` is set to `true`.
#
# EXAMPLE:
# node {
# calculator: "FaceLandmarkOnnxCUDA"
# input_stream: "IMAGE:image"
# input_stream: "ROI:face_roi"
# input_side_packet: "WITH_ATTENTION:with_attention"
# output_stream: "LANDMARKS:face_landmarks"
# }
type: "FaceLandmarkOnnxCUDA"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# ROI (region of interest) within the given image where a face is located.
# (NormalizedRect)
input_stream: "ROI:roi"
# Whether to run face mesh model with attention on lips and eyes. (bool)
# Attention provides more accuracy on lips and eye regions as well as iris
# landmarks.
input_side_packet: "WITH_ATTENTION:with_attention"
# 468 or 478 facial landmarks within the given ROI. (NormalizedLandmarkList)
#
# Number of landmarks depends on the WITH_ATTENTION flag. If it's `true` - then
# there will be 478 landmarks with refined lips, eyes and irises (10 extra
# landmarks are for irises), otherwise 468 non-refined landmarks are returned.
#
# NOTE: if a face is not present within the given ROI, for this particular
# timestamp there will not be an output packet in the LANDMARKS stream. However,
# the MediaPipe framework will internally inform the downstream calculators of
# the absence of this packet so that they don't wait for it unnecessarily.
output_stream: "LANDMARKS:face_landmarks"
# Transforms the input image into a 192x192 tensor.
node: {
calculator: "ImageToTensorCalculator"
input_stream: "IMAGE:image"
input_stream: "NORM_RECT:roi"
output_stream: "TENSORS:input_tensors"
options: {
[mediapipe.ImageToTensorCalculatorOptions.ext] {
output_tensor_width: 192
output_tensor_height: 192
output_tensor_float_range {
min: 0.0
max: 1.0
}
}
}
}
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:output_tensors"
options: {
[mediapipe.InferenceCalculatorOptions.ext] {
delegate { cuda {} }
model_path: "mediapipe/modules/face_landmark/face_landmark.onnx"
}
}
}
# Splits a vector of tensors into landmark tensors and face flag tensor.
node {
calculator: "SwitchContainer"
input_side_packet: "ENABLE:with_attention"
input_stream: "output_tensors"
output_stream: "landmark_tensors"
output_stream: "face_flag_tensor"
options: {
[mediapipe.SwitchContainerOptions.ext] {
contained_node: {
calculator: "SplitTensorVectorCalculator"
options: {
[mediapipe.SplitVectorCalculatorOptions.ext] {
ranges: { begin: 0 end: 1 }
ranges: { begin: 1 end: 2 }
}
}
}
contained_node: {
calculator: "SplitTensorVectorCalculator"
options: {
[mediapipe.SplitVectorCalculatorOptions.ext] {
ranges: { begin: 0 end: 6 }
ranges: { begin: 6 end: 7 }
}
}
}
}
}
}
# Converts the face-flag tensor into a float that represents the confidence
# score of face presence.
node {
calculator: "TensorsToFloatsCalculator"
input_stream: "TENSORS:face_flag_tensor"
output_stream: "FLOAT:face_presence_score"
options {
[mediapipe.TensorsToFloatsCalculatorOptions.ext] {
activation: SIGMOID
}
}
}
# Applies a threshold to the confidence score to determine whether a face is
# present.
node {
calculator: "ThresholdingCalculator"
input_stream: "FLOAT:face_presence_score"
output_stream: "FLAG:face_presence"
options: {
[mediapipe.ThresholdingCalculatorOptions.ext] {
threshold: 0.5
}
}
}
# Drop landmarks tensors if face is not present.
node {
calculator: "GateCalculator"
input_stream: "landmark_tensors"
input_stream: "ALLOW:face_presence"
output_stream: "ensured_landmark_tensors"
}
# Decodes the landmark tensors into a vector of landmarks, where the landmark
# coordinates are normalized by the size of the input image to the model.
node {
calculator: "SwitchContainer"
input_side_packet: "ENABLE:with_attention"
input_stream: "TENSORS:ensured_landmark_tensors"
output_stream: "LANDMARKS:landmarks"
options: {
[mediapipe.SwitchContainerOptions.ext] {
contained_node: {
calculator: "TensorsToFaceLandmarks"
}
contained_node: {
calculator: "TensorsToFaceLandmarksWithAttention"
}
}
}
}
# Projects the landmarks from the cropped face image to the corresponding
# locations on the full image before cropping (input to the graph).
node {
calculator: "LandmarkProjectionCalculator"
input_stream: "NORM_LANDMARKS:landmarks"
input_stream: "NORM_RECT:roi"
output_stream: "NORM_LANDMARKS:face_landmarks"
}

View File

@ -0,0 +1,166 @@
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
# executed with onnxruntime on TensorRT.)
#
# It is required that "face_landmark.onnx" is available at
# "mediapipe/modules/face_landmark/face_landmark.onnx"
# path during execution if `with_attention` is not set or set to `false`.
#
# It is required that "face_landmark_with_attention.onnx" is available at
# "mediapipe/modules/face_landmark/face_landmark_with_attention.onnx"
# path during execution if `with_attention` is set to `true`.
#
# EXAMPLE:
# node {
# calculator: "FaceLandmarkOnnxTensorrt"
# input_stream: "IMAGE:image"
# input_stream: "ROI:face_roi"
# input_side_packet: "WITH_ATTENTION:with_attention"
# output_stream: "LANDMARKS:face_landmarks"
# }
type: "FaceLandmarkOnnxTensorrt"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# ROI (region of interest) within the given image where a face is located.
# (NormalizedRect)
input_stream: "ROI:roi"
# Whether to run face mesh model with attention on lips and eyes. (bool)
# Attention provides more accuracy on lips and eye regions as well as iris
# landmarks.
input_side_packet: "WITH_ATTENTION:with_attention"
# 468 or 478 facial landmarks within the given ROI. (NormalizedLandmarkList)
#
# Number of landmarks depends on the WITH_ATTENTION flag. If it's `true` - then
# there will be 478 landmarks with refined lips, eyes and irises (10 extra
# landmarks are for irises), otherwise 468 non-refined landmarks are returned.
#
# NOTE: if a face is not present within the given ROI, for this particular
# timestamp there will not be an output packet in the LANDMARKS stream. However,
# the MediaPipe framework will internally inform the downstream calculators of
# the absence of this packet so that they don't wait for it unnecessarily.
output_stream: "LANDMARKS:face_landmarks"
# Transforms the input image into a 192x192 tensor.
node: {
calculator: "ImageToTensorCalculator"
input_stream: "IMAGE:image"
input_stream: "NORM_RECT:roi"
output_stream: "TENSORS:input_tensors"
options: {
[mediapipe.ImageToTensorCalculatorOptions.ext] {
output_tensor_width: 192
output_tensor_height: 192
output_tensor_float_range {
min: 0.0
max: 1.0
}
}
}
}
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:output_tensors"
options: {
[mediapipe.InferenceCalculatorOptions.ext] {
delegate { tensorrt {} }
model_path: "mediapipe/modules/face_landmark/face_landmark.onnx"
}
}
}
# Splits a vector of tensors into landmark tensors and face flag tensor.
node {
calculator: "SwitchContainer"
input_side_packet: "ENABLE:with_attention"
input_stream: "output_tensors"
output_stream: "landmark_tensors"
output_stream: "face_flag_tensor"
options: {
[mediapipe.SwitchContainerOptions.ext] {
contained_node: {
calculator: "SplitTensorVectorCalculator"
options: {
[mediapipe.SplitVectorCalculatorOptions.ext] {
ranges: { begin: 0 end: 1 }
ranges: { begin: 1 end: 2 }
}
}
}
contained_node: {
calculator: "SplitTensorVectorCalculator"
options: {
[mediapipe.SplitVectorCalculatorOptions.ext] {
ranges: { begin: 0 end: 6 }
ranges: { begin: 6 end: 7 }
}
}
}
}
}
}
# Converts the face-flag tensor into a float that represents the confidence
# score of face presence.
node {
calculator: "TensorsToFloatsCalculator"
input_stream: "TENSORS:face_flag_tensor"
output_stream: "FLOAT:face_presence_score"
options {
[mediapipe.TensorsToFloatsCalculatorOptions.ext] {
activation: SIGMOID
}
}
}
# Applies a threshold to the confidence score to determine whether a face is
# present.
node {
calculator: "ThresholdingCalculator"
input_stream: "FLOAT:face_presence_score"
output_stream: "FLAG:face_presence"
options: {
[mediapipe.ThresholdingCalculatorOptions.ext] {
threshold: 0.5
}
}
}
# Drop landmarks tensors if face is not present.
node {
calculator: "GateCalculator"
input_stream: "landmark_tensors"
input_stream: "ALLOW:face_presence"
output_stream: "ensured_landmark_tensors"
}
# Decodes the landmark tensors into a vector of landmarks, where the landmark
# coordinates are normalized by the size of the input image to the model.
node {
calculator: "SwitchContainer"
input_side_packet: "ENABLE:with_attention"
input_stream: "TENSORS:ensured_landmark_tensors"
output_stream: "LANDMARKS:landmarks"
options: {
[mediapipe.SwitchContainerOptions.ext] {
contained_node: {
calculator: "TensorsToFaceLandmarks"
}
contained_node: {
calculator: "TensorsToFaceLandmarksWithAttention"
}
}
}
}
# Projects the landmarks from the cropped face image to the corresponding
# locations on the full image before cropping (input to the graph).
node {
calculator: "LandmarkProjectionCalculator"
input_stream: "NORM_LANDMARKS:landmarks"
input_stream: "NORM_RECT:roi"
output_stream: "NORM_LANDMARKS:face_landmarks"
}