face align ready
This commit is contained in:
parent
fcfe31a67b
commit
0c20ce50bd
|
@ -116,7 +116,7 @@ namespace mediapipe
|
|||
std::string tag = tag_and_index.first;
|
||||
if (tag == kMaskTag)
|
||||
{
|
||||
cc->Inputs().Get(id).Set<std::unordered_map<std::string, cv::Mat>>();
|
||||
cc->Inputs().Get(id).Set<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
}
|
||||
else if (tag.empty())
|
||||
{
|
||||
|
@ -180,26 +180,12 @@ namespace mediapipe
|
|||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||
}
|
||||
|
||||
// Render streams onto render target.
|
||||
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
|
||||
++id)
|
||||
const std::vector<std::unordered_map<std::string, cv::Mat>> &mask_vec =
|
||||
cc->Inputs().Tag(kMaskTag).Get<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
if (mask_vec.size() > 0)
|
||||
{
|
||||
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
|
||||
std::string tag = tag_and_index.first;
|
||||
if (!tag.empty() && tag != kMaskTag)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (cc->Inputs().Get(id).IsEmpty())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
RET_CHECK_EQ(kMaskTag, tag);
|
||||
const std::unordered_map<std::string, cv::Mat> &mask_vec =
|
||||
cc->Inputs().Get(id).Get<std::unordered_map<std::string, cv::Mat>>();
|
||||
if (mask_vec.size() > 1)
|
||||
MP_RETURN_IF_ERROR(DrawLipstick(cc, image_mat, &target_format, mask_vec));
|
||||
for (auto mask : mask_vec)
|
||||
MP_RETURN_IF_ERROR(DrawLipstick(cc, image_mat, &target_format, mask));
|
||||
}
|
||||
|
||||
// Copy the rendered image to output.
|
||||
|
@ -385,7 +371,6 @@ namespace mediapipe
|
|||
cv::cvtColor(masked_lips_crop, slice_gray, cv::COLOR_RGB2GRAY);
|
||||
|
||||
masked_lips_crop.copyTo(slice, slice_gray);
|
||||
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
//#include <android/log.h>
|
||||
|
||||
#include <memory>
|
||||
|
@ -119,7 +120,7 @@ namespace mediapipe
|
|||
std::string tag = tag_and_index.first;
|
||||
if (tag == kMaskTag)
|
||||
{
|
||||
cc->Inputs().Get(id).Set<std::unordered_map<std::string, cv::Mat>>();
|
||||
cc->Inputs().Get(id).Set<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
}
|
||||
else if (tag.empty())
|
||||
{
|
||||
|
@ -129,7 +130,7 @@ namespace mediapipe
|
|||
|
||||
if (tag == kFaceBoxTag)
|
||||
{
|
||||
cc->Inputs().Get(id).Set<std::tuple<double, double, double, double>>();
|
||||
cc->Inputs().Get(id).Set<std::vector<std::tuple<double, double, double, double>>>();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -178,7 +179,6 @@ namespace mediapipe
|
|||
{
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
if (cc->Inputs().HasTag(kFaceBoxTag) &&
|
||||
cc->Inputs().Tag(kFaceBoxTag).IsEmpty())
|
||||
{
|
||||
|
@ -194,32 +194,18 @@ namespace mediapipe
|
|||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||
}
|
||||
|
||||
// Render streams onto render target.
|
||||
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
|
||||
++id)
|
||||
const std::vector<std::unordered_map<std::string, cv::Mat>> &mask_vec =
|
||||
cc->Inputs().Tag(kMaskTag).Get<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
|
||||
const std::vector<std::tuple<double, double, double, double>> &face_box =
|
||||
cc->Inputs().Tag(kFaceBoxTag).Get<std::vector<std::tuple<double, double, double, double>>>();
|
||||
|
||||
if (mask_vec.size() > 0 && face_box.size() > 0)
|
||||
{
|
||||
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
|
||||
std::string tag = tag_and_index.first;
|
||||
if (!tag.empty() && (tag != kMaskTag || tag != kFaceBoxTag))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (cc->Inputs().Get(id).IsEmpty())
|
||||
{
|
||||
continue;
|
||||
for (int i = 0; i < mask_vec.size(); i++)
|
||||
MP_RETURN_IF_ERROR(SmoothFace(cc, image_mat, &target_format, mask_vec[i], face_box[i]));
|
||||
}
|
||||
|
||||
RET_CHECK_EQ(kMaskTag, tag);
|
||||
const std::unordered_map<std::string, cv::Mat> &mask_vec =
|
||||
cc->Inputs().Get(id).Get<std::unordered_map<std::string, cv::Mat>>();
|
||||
|
||||
RET_CHECK_EQ(kFaceBoxTag, tag);
|
||||
const std::tuple<double, double, double, double> &face_box =
|
||||
cc->Inputs().Get(id).Get<std::tuple<double, double, double, double>>();
|
||||
|
||||
if (mask_vec.size() > 1)
|
||||
MP_RETURN_IF_ERROR(SmoothFace(cc, image_mat, &target_format, mask_vec, face_box));
|
||||
}
|
||||
// Copy the rendered image to output.
|
||||
uchar *image_mat_ptr = image_mat->data;
|
||||
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat));
|
||||
|
@ -315,6 +301,7 @@ namespace mediapipe
|
|||
cv::Mat SmoothFaceCalculator::predict_forehead_mask(std::unique_ptr<cv::Mat> &image_mat,
|
||||
const std::unordered_map<std::string, cv::Mat> &mask_vec, double face_box_min_y)
|
||||
{
|
||||
|
||||
cv::Mat mat_image__ = *image_mat.get();
|
||||
int image_width_ = image_mat->cols;
|
||||
int image_height_ = image_mat->rows;
|
||||
|
|
|
@ -114,7 +114,7 @@ namespace mediapipe
|
|||
std::string tag = tag_and_index.first;
|
||||
if (tag == kMaskTag)
|
||||
{
|
||||
cc->Inputs().Get(id).Set<std::unordered_map<std::string, cv::Mat>>();
|
||||
cc->Inputs().Get(id).Set<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
}
|
||||
else if (tag.empty())
|
||||
{
|
||||
|
@ -178,26 +178,12 @@ namespace mediapipe
|
|||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||
}
|
||||
|
||||
// Render streams onto render target.
|
||||
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
|
||||
++id)
|
||||
const std::vector<std::unordered_map<std::string, cv::Mat>> &mask_vec =
|
||||
cc->Inputs().Tag(kMaskTag).Get<std::vector<std::unordered_map<std::string, cv::Mat>>>();
|
||||
if (mask_vec.size() > 0)
|
||||
{
|
||||
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
|
||||
std::string tag = tag_and_index.first;
|
||||
if (!tag.empty() && tag != kMaskTag)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (cc->Inputs().Get(id).IsEmpty())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
RET_CHECK_EQ(kMaskTag, tag);
|
||||
const std::unordered_map<std::string, cv::Mat> &mask_vec =
|
||||
cc->Inputs().Get(id).Get<std::unordered_map<std::string, cv::Mat>>();
|
||||
if (mask_vec.size() > 1)
|
||||
MP_RETURN_IF_ERROR(WhitenTeeth(cc, image_mat, &target_format, mask_vec));
|
||||
for (auto mask : mask_vec)
|
||||
MP_RETURN_IF_ERROR(WhitenTeeth(cc, image_mat, &target_format, mask));
|
||||
}
|
||||
|
||||
// Copy the rendered image to output.
|
||||
|
|
|
@ -31,6 +31,7 @@ cc_library(
|
|||
"//mediapipe/framework/formats:image_frame",
|
||||
"//mediapipe/framework/formats:image_frame_opencv",
|
||||
"//mediapipe/framework/formats:video_stream_header",
|
||||
"//mediapipe/framework/formats:landmark_cc_proto",
|
||||
"//mediapipe/framework/port:logging",
|
||||
"//mediapipe/framework/port:opencv_core",
|
||||
"//mediapipe/framework/port:opencv_imgproc",
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <map>
|
||||
#include <string>
|
||||
//#include <android/log.h>
|
||||
|
||||
|
@ -29,21 +28,20 @@
|
|||
#include "mediapipe/framework/formats/image_frame.h"
|
||||
#include "mediapipe/framework/formats/image_frame_opencv.h"
|
||||
#include "mediapipe/framework/formats/video_stream_header.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/port/logging.h"
|
||||
#include "mediapipe/framework/port/opencv_core_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_highgui_inc.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
#include "mediapipe/util/annotation_renderer.h"
|
||||
#include "mediapipe/util/render_data.pb.h"
|
||||
#include "mediapipe/framework/port/logging.h"
|
||||
#include "mediapipe/framework/port/vector.h"
|
||||
#include "mediapipe/util/color.pb.h"
|
||||
|
||||
namespace mediapipe
|
||||
{
|
||||
namespace
|
||||
{
|
||||
static const std::vector<cv::Point> FFHQ_NORM_LM = {
|
||||
static const std::vector<cv::Point2f> FFHQ_NORM_LM = {
|
||||
{638.68525475 / 1024, 486.24604922 / 1024},
|
||||
{389.31496114 / 1024, 485.8921848 / 1024},
|
||||
{513.67979275 / 1024, 620.8915371 / 1024},
|
||||
|
@ -52,6 +50,8 @@ namespace mediapipe
|
|||
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
constexpr char kVectorTag[] = "VECTOR";
|
||||
constexpr char kLandmarksTag[] = "LANDMARKS";
|
||||
constexpr char kNormLandmarksTag[] = "NORM_LANDMARKS";
|
||||
|
||||
std::tuple<int, int> _normalized_to_pixel_coordinates(float normalized_x,
|
||||
float normalized_y, int image_width, int image_height)
|
||||
|
@ -63,8 +63,8 @@ namespace mediapipe
|
|||
return {x_px, y_px};
|
||||
};
|
||||
|
||||
static const std::unordered_set<cv::Point> FACEMESH_FACE_OVAL =
|
||||
{{10, 338}, {338, 297}, {297, 332}, {332, 284}, {284, 251}, {251, 389}, {389, 356}, {356, 454}, {454, 323}, {323, 361}, {361, 288}, {288, 397}, {397, 365}, {365, 379}, {379, 378}, {378, 400}, {400, 377}, {377, 152}, {152, 148}, {148, 176}, {176, 149}, {149, 150}, {150, 136}, {136, 172}, {172, 58}, {58, 132}, {132, 93}, {93, 234}, {234, 127}, {127, 162}, {162, 21}, {21, 54}, {54, 103}, {103, 67}, {67, 109}, {109, 10}};
|
||||
static const std::vector<cv::Point> FACEMESH_FACE_OVAL{
|
||||
{10, 338}, {338, 297}, {297, 332}, {332, 284}, {284, 251}, {251, 389}, {389, 356}, {356, 454}, {454, 323}, {323, 361}, {361, 288}, {288, 397}, {397, 365}, {365, 379}, {379, 378}, {378, 400}, {400, 377}, {377, 152}, {152, 148}, {148, 176}, {176, 149}, {149, 150}, {150, 136}, {136, 172}, {172, 58}, {58, 132}, {132, 93}, {93, 234}, {234, 127}, {127, 162}, {162, 21}, {21, 54}, {54, 103}, {103, 67}, {67, 109}, {109, 10}};
|
||||
|
||||
enum
|
||||
{
|
||||
|
@ -77,8 +77,6 @@ namespace mediapipe
|
|||
size_t RoundUp(size_t n, size_t m) { return ((n + m - 1) / m) * m; } // NOLINT
|
||||
inline bool HasImageTag(mediapipe::CalculatorContext *cc) { return false; }
|
||||
|
||||
using Point = RenderAnnotation::Point;
|
||||
|
||||
bool NormalizedtoPixelCoordinates(double normalized_x, double normalized_y,
|
||||
int image_width, int image_height, int *x_px,
|
||||
int *y_px)
|
||||
|
@ -99,6 +97,115 @@ namespace mediapipe
|
|||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class LandmarkType>
|
||||
bool IsLandmarkVisibleAndPresent(const LandmarkType &landmark,
|
||||
bool utilize_visibility,
|
||||
float visibility_threshold,
|
||||
bool utilize_presence,
|
||||
float presence_threshold)
|
||||
{
|
||||
if (utilize_visibility && landmark.has_visibility() &&
|
||||
landmark.visibility() < visibility_threshold)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
if (utilize_presence && landmark.has_presence() &&
|
||||
landmark.presence() < presence_threshold)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::tuple<float, cv::Mat, cv::Mat> LandmarkTransform(
|
||||
cv::Mat &source,
|
||||
cv::Mat &target, float eps = 1e-7)
|
||||
{
|
||||
cv::Mat source_mean_mat, target_mean_mat, source1ch, target1ch;
|
||||
|
||||
cv::reduce(source, source_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
||||
cv::reduce(target, target_mean_mat, 0, CV_REDUCE_AVG, CV_32F);
|
||||
|
||||
source -= {source_mean_mat.at<float>(0, 0), source_mean_mat.at<float>(0, 1)};
|
||||
target -= {target_mean_mat.at<float>(0, 0), target_mean_mat.at<float>(0, 1)};
|
||||
|
||||
source1ch = source.reshape(1, 5);
|
||||
target1ch = target.reshape(1, 5);
|
||||
|
||||
cv::Mat source_std_mat, target_std_mat;
|
||||
cv::meanStdDev(source1ch, cv::noArray(), source_std_mat);
|
||||
cv::meanStdDev(target1ch, cv::noArray(), target_std_mat);
|
||||
source_std_mat.convertTo(source_std_mat, CV_32F);
|
||||
target_std_mat.convertTo(target_std_mat, CV_32F);
|
||||
|
||||
float source_std = source_std_mat.at<float>(0, 0);
|
||||
float target_std = target_std_mat.at<float>(0, 0);
|
||||
|
||||
source /= source_std + eps;
|
||||
target /= target_std + eps;
|
||||
|
||||
cv::Mat u, vt, rotation, w;
|
||||
|
||||
source1ch = source.reshape(1, 5);
|
||||
target1ch = target.reshape(1, 5);
|
||||
|
||||
//std::cout << "R (numpy) = " << std::endl << cv::format(source, cv::Formatter::FMT_NUMPY) << std::endl << std::endl;
|
||||
|
||||
cv::SVD::compute(source1ch.t() * target1ch, w, u, vt);
|
||||
|
||||
rotation = (u * vt).t();
|
||||
|
||||
float scale = target_std / source_std + eps;
|
||||
cv::Mat translation;
|
||||
|
||||
cv::subtract(target_mean_mat.reshape(1, 2), scale * rotation * source_mean_mat.reshape(1, 2), translation);
|
||||
|
||||
return std::make_tuple(scale, rotation, translation);
|
||||
}
|
||||
|
||||
std::tuple<float, float, float, float> Crop(
|
||||
std::unique_ptr<cv::Mat> &image_mat,
|
||||
std::tuple<float, float, float, float> roi, float extend = 1.0,
|
||||
bool square = false, float shift_x = 0.0, float shift_y = 0.0)
|
||||
{
|
||||
cv::Mat image = *image_mat.get();
|
||||
|
||||
int width = image_mat->cols;
|
||||
int height = image_mat->rows;
|
||||
|
||||
auto &[left, top, right, bottom] = roi;
|
||||
int y = static_cast<int>((bottom + top) / 2);
|
||||
int x = static_cast<int>((right + left) / 2);
|
||||
|
||||
int size_y = static_cast<int>(extend * (bottom - top) / 2);
|
||||
int size_x = static_cast<int>(extend * (right - left) / 2);
|
||||
|
||||
if (square)
|
||||
size_x = size_y = std::max(size_x, size_y);
|
||||
|
||||
x += static_cast<int>(shift_x * size_x);
|
||||
y += static_cast<int>(shift_y * size_y);
|
||||
|
||||
roi = std::make_tuple(
|
||||
std::max(0, x - size_x),
|
||||
std::max(0, y - size_y),
|
||||
std::min(x + size_x, width),
|
||||
std::min(y + size_y, height));
|
||||
|
||||
image = image(cv::Range(bottom, top), cv::Range(left, right));
|
||||
|
||||
if (square)
|
||||
cv::copyMakeBorder(
|
||||
image, image, std::abs(std::min(0, y - size_y)),
|
||||
std::abs(std::min(0, height - y - size_y)),
|
||||
std::abs(std::min(0, x - size_x)),
|
||||
std::abs(std::min(0, width - x - size_x)),
|
||||
cv::BORDER_CONSTANT);
|
||||
|
||||
return roi;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
class FastUtilsCalculator : public CalculatorBase
|
||||
|
@ -125,30 +232,26 @@ namespace mediapipe
|
|||
|
||||
absl::Status Call(CalculatorContext *cc,
|
||||
std::unique_ptr<cv::Mat> &image_mat,
|
||||
ImageFormat::Format *target_format,
|
||||
const RenderData &render_data,
|
||||
std::unordered_map<std::string, cv::Mat> &all_masks);
|
||||
ImageFormat::Format &target_format,
|
||||
std::vector<std::vector<cv::Point2f>> &lms_out);
|
||||
|
||||
absl::Status Align(std::unique_ptr<cv::Mat> &image_mat,
|
||||
cv::Mat source_lm,
|
||||
cv::Mat target_lm = cv::Mat(FFHQ_NORM_LM), cv::Size size = cv::Size(256, 256),
|
||||
float extend = NULL, std::tuple<float, float, float, float> roi = {NULL, NULL, NULL, NULL});
|
||||
|
||||
// Indicates if image frame is available as input.
|
||||
bool image_frame_available_ = false;
|
||||
std::unordered_map<std::string, const std::vector<int>> index_dict = {
|
||||
std::vector<std::pair<std::string, const std::vector<int>>> index_dict = {
|
||||
{"leftEye", {384, 385, 386, 387, 388, 390, 263, 362, 398, 466, 373, 374, 249, 380, 381, 382}},
|
||||
{"rightEye", {160, 33, 161, 163, 133, 7, 173, 144, 145, 246, 153, 154, 155, 157, 158, 159}},
|
||||
{"nose", {4}},
|
||||
{"lips", {0, 13, 14, 17, 84}},
|
||||
//{"lips", {0, 13, 14, 17, 84}},
|
||||
{"leftLips", {61, 146}},
|
||||
{"rightLips", {291, 375}},
|
||||
};
|
||||
|
||||
int width_ = 0;
|
||||
int height_ = 0;
|
||||
int width_canvas_ = 0; // Size of overlay drawing texture canvas.
|
||||
int height_canvas_ = 0;
|
||||
|
||||
int max_num_faces = 1;
|
||||
bool refine_landmarks = True;
|
||||
double min_detection_confidence = 0.5;
|
||||
double min_tracking_confidence = 0.5;
|
||||
std::unique_ptr<cv::Mat> image_mat;
|
||||
};
|
||||
REGISTER_CALCULATOR(FastUtilsCalculator);
|
||||
|
||||
|
@ -162,6 +265,23 @@ namespace mediapipe
|
|||
CHECK(cc->Outputs().HasTag(kImageFrameTag));
|
||||
}
|
||||
|
||||
RET_CHECK(cc->Inputs().HasTag(kLandmarksTag) ||
|
||||
cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
<< "None of the input streams are provided.";
|
||||
RET_CHECK(!(cc->Inputs().HasTag(kLandmarksTag) &&
|
||||
cc->Inputs().HasTag(kNormLandmarksTag)))
|
||||
<< "Can only one type of landmark can be taken. Either absolute or "
|
||||
"normalized landmarks.";
|
||||
|
||||
if (cc->Inputs().HasTag(kLandmarksTag))
|
||||
{
|
||||
cc->Inputs().Tag(kLandmarksTag).Set<std::vector<LandmarkList>>();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
{
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Set<std::vector<NormalizedLandmarkList>>();
|
||||
}
|
||||
|
||||
if (cc->Outputs().HasTag(kImageFrameTag))
|
||||
{
|
||||
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
|
||||
|
@ -202,50 +322,29 @@ namespace mediapipe
|
|||
{
|
||||
return absl::OkStatus();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kLandmarksTag) &&
|
||||
cc->Inputs().Tag(kLandmarksTag).IsEmpty())
|
||||
{
|
||||
return absl::OkStatus();
|
||||
}
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag) &&
|
||||
cc->Inputs().Tag(kNormLandmarksTag).IsEmpty())
|
||||
{
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
// Initialize render target, drawn with OpenCV.
|
||||
std::unique_ptr<cv::Mat> image_mat;
|
||||
ImageFormat::Format target_format;
|
||||
std::unordered_map<std::string, cv::Mat> all_masks;
|
||||
std::vector<std::vector<cv::Point2f>> lms_out;
|
||||
|
||||
if (cc->Outputs().HasTag(kImageFrameTag))
|
||||
{
|
||||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||
}
|
||||
|
||||
// Render streams onto render target.
|
||||
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
|
||||
++id)
|
||||
{
|
||||
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
|
||||
std::string tag = tag_and_index.first;
|
||||
if (!tag.empty() && tag != kVectorTag)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (cc->Inputs().Get(id).IsEmpty())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (tag.empty())
|
||||
{
|
||||
// Empty tag defaults to accepting a single object of RenderData type.
|
||||
const RenderData &render_data = cc->Inputs().Get(id).Get<RenderData>();
|
||||
MP_RETURN_IF_ERROR(Call(cc, image_mat, &target_format, render_data, all_masks));
|
||||
}
|
||||
else
|
||||
{
|
||||
RET_CHECK_EQ(kVectorTag, tag);
|
||||
const std::vector<RenderData> &render_data_vec =
|
||||
cc->Inputs().Get(id).Get<std::vector<RenderData>>();
|
||||
for (const RenderData &render_data : render_data_vec)
|
||||
{
|
||||
MP_RETURN_IF_ERROR(Call(cc, image_mat, &target_format, render_data, all_masks));
|
||||
}
|
||||
}
|
||||
}
|
||||
MP_RETURN_IF_ERROR(Call(cc, image_mat, target_format, lms_out));
|
||||
|
||||
cv::Mat source_lm = cv::Mat(lms_out[0]);
|
||||
|
||||
MP_RETURN_IF_ERROR(Align(image_mat, source_lm));
|
||||
|
||||
// Copy the rendered image to output.
|
||||
uchar *image_mat_ptr = image_mat->data;
|
||||
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr, image_mat));
|
||||
|
||||
|
@ -339,61 +438,99 @@ namespace mediapipe
|
|||
|
||||
absl::Status FastUtilsCalculator::Call(CalculatorContext *cc,
|
||||
std::unique_ptr<cv::Mat> &image_mat,
|
||||
ImageFormat::Format *target_format,
|
||||
const RenderData &render_data,
|
||||
std::unordered_map<std::string, cv::Mat> &all_masks)
|
||||
ImageFormat::Format &target_format,
|
||||
std::vector<std::vector<cv::Point2f>> &lms_out)
|
||||
{
|
||||
cv::Mat mat_image_ = *image_mat.get();
|
||||
|
||||
int image_width_ = image_mat->cols;
|
||||
int image_height_ = image_mat->rows;
|
||||
|
||||
cv::Mat mask;
|
||||
std::vector<cv::Point> kps, landmarks;
|
||||
std::vector<std::vector<cv::Point>> lms_out;
|
||||
std::vector<cv::Point2f> kps, landmarks;
|
||||
|
||||
int c = 0;
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
{
|
||||
const std::vector<NormalizedLandmarkList> &landmarkslist =
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Get<std::vector<NormalizedLandmarkList>>();
|
||||
|
||||
std::vector<cv::Point2f> point_array;
|
||||
for (const auto &face : landmarkslist)
|
||||
{
|
||||
for (const auto &[key, value] : index_dict)
|
||||
{
|
||||
for (auto order : value)
|
||||
{
|
||||
c = 0;
|
||||
for (auto &annotation : render_data.render_annotations())
|
||||
|
||||
const NormalizedLandmark &landmark = face.landmark(order);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
if (annotation.data_case() == RenderAnnotation::kPoint)
|
||||
{
|
||||
if (order == c)
|
||||
{
|
||||
const auto &point = annotation.point();
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
kps.push_back(cv::Point(x, y));
|
||||
kps.push_back(cv::Point2f(x, y));
|
||||
}
|
||||
c += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
double sumx = 0, sumy = 0, meanx, meany;
|
||||
|
||||
for (auto p : kps)
|
||||
{
|
||||
sumx += p.x;
|
||||
sumy += p.y;
|
||||
}
|
||||
meanx = sumx / kps.size();
|
||||
meany = sumy / kps.size();
|
||||
cv::Mat mean;
|
||||
cv::reduce(kps, mean, 1, CV_REDUCE_AVG, CV_32F);
|
||||
|
||||
landmarks.push_back({meanx, meany});
|
||||
landmarks.push_back({mean.at<float>(0, 0), mean.at<float>(0, 1)});
|
||||
|
||||
kps.clear();
|
||||
}
|
||||
|
||||
lms_out.push_back(landmarks);
|
||||
|
||||
landmarks.clear();
|
||||
}
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
absl::Status FastUtilsCalculator::Align(std::unique_ptr<cv::Mat> &image_mat,
|
||||
cv::Mat source_lm,
|
||||
cv::Mat target_lm, cv::Size size,
|
||||
float extend, std::tuple<float, float, float, float> roi)
|
||||
{
|
||||
cv::Mat mat_image_ = *image_mat.get();
|
||||
|
||||
cv::Mat source, target;
|
||||
source_lm.convertTo(source, CV_32F);
|
||||
target_lm.convertTo(target, CV_32F);
|
||||
|
||||
if (target.at<float>(0, 0) < 1)
|
||||
{
|
||||
target *= size.width;
|
||||
}
|
||||
|
||||
if (std::get<0>(roi) != NULL)
|
||||
{
|
||||
roi = Crop(image_mat, roi, extend);
|
||||
|
||||
auto [left, top, right, bottom] = roi;
|
||||
source(cv::Range(cv::Range::all()), cv::Range(0, 1)) -= left;
|
||||
source(cv::Range(cv::Range::all()), cv::Range(1, 2)) -= top;
|
||||
}
|
||||
auto [scale, rotation, translation] = LandmarkTransform(source, target);
|
||||
|
||||
std::vector<cv::Mat> vec_mat;
|
||||
|
||||
vec_mat.push_back(scale * rotation);
|
||||
vec_mat.push_back(translation.reshape(1, {2, 1}));
|
||||
|
||||
cv::Mat transform, image;
|
||||
cv::hconcat(vec_mat, transform);
|
||||
|
||||
cv::warpAffine(mat_image_, *image_mat, transform, size, 1, 0, 0.0);
|
||||
|
||||
return absl::OkStatus();
|
||||
}
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -55,20 +55,18 @@ namespace mediapipe
|
|||
constexpr char kFaceBoxTag[] = "FACEBOX";
|
||||
constexpr char kImageFrameTag[] = "IMAGE";
|
||||
|
||||
static const std::vector<int> UPPER_LIP = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 308, 415, 310, 311, 312, 13, 82, 81, 80, 191, 78};
|
||||
static const std::vector<int> LOWER_LIP = {61, 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
|
||||
static const std::vector<int> FACE_OVAL = {10, 338, 338, 297, 297, 332, 332, 284, 284, 251, 251, 389, 389, 356, 356,
|
||||
454, 454, 323, 323, 361, 361, 288, 288, 397, 397, 365, 365, 379, 379, 378,
|
||||
378, 400, 400, 377, 377, 152, 152, 148, 148, 176, 176, 149, 149, 150, 150,
|
||||
136, 136, 172, 172, 58, 58, 132, 132, 93, 93, 234, 234, 127, 127, 162, 162,
|
||||
21, 21, 54, 54, 103, 103, 67, 67, 109, 109, 10};
|
||||
static const std::vector<int> MOUTH_INSIDE = {78, 191, 80, 81, 13, 312, 311, 310, 415, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95};
|
||||
static const std::vector<int> PART_FOREHEAD_B = {21, 54, 103, 67, 109, 10, 338, 297, 332, 284, 251, 301, 293, 334, 296, 336, 9, 107, 66, 105, 63, 71};
|
||||
static const std::vector<int> LEFT_EYE = {130, 33, 246, 161, 160, 159, 157, 173, 133, 155, 154, 153, 145, 144, 163, 7};
|
||||
static const std::vector<int> RIGHT_EYE = {362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380, 381, 382};
|
||||
static const std::vector<int> LIPS = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
|
||||
static const std::vector<int> LEFT_BROW = {70, 63, 105, 66, 107, 55, 65, 52, 53, 46};
|
||||
static const std::vector<int> RIGHT_BROW = {336, 296, 334, 293, 301, 300, 283, 282, 295, 285};
|
||||
std::unordered_map<std::string, const std::vector<int>> orderList = {
|
||||
{"UPPER_LIP", {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 308, 415, 310, 311, 312, 13, 82, 81, 80, 191, 78}},
|
||||
{"LOWER_LIP", {61, 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146}},
|
||||
{"FACE_OVAL", {10, 338, 338, 297, 297, 332, 332, 284, 284, 251, 251, 389, 389, 356, 356, 454, 454, 323, 323, 361, 361, 288, 288, 397, 397, 365, 365, 379, 379, 378, 378, 400, 400, 377, 377, 152, 152, 148, 148, 176, 176, 149, 149, 150, 150, 136, 136, 172, 172, 58, 58, 132, 132, 93, 93, 234, 234, 127, 127, 162, 162, 21, 21, 54, 54, 103, 103, 67, 67, 109, 109, 10}},
|
||||
{"MOUTH_INSIDE", {78, 191, 80, 81, 13, 312, 311, 310, 415, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95}},
|
||||
{"LEFT_EYE", {130, 33, 246, 161, 160, 159, 157, 173, 133, 155, 154, 153, 145, 144, 163, 7}},
|
||||
{"RIGHT_EYE", {362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380, 381, 382}},
|
||||
{"LEFT_BROW", {70, 63, 105, 66, 107, 55, 65, 52, 53, 46}},
|
||||
{"RIGHT_BROW", {336, 296, 334, 293, 301, 300, 283, 282, 295, 285}},
|
||||
{"LIPS", {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146}},
|
||||
{"PART_FOREHEAD_B", {21, 54, 103, 67, 109, 10, 338, 297, 332, 284, 251, 301, 293, 334, 296, 336, 9, 107, 66, 105, 63, 71}},
|
||||
};
|
||||
|
||||
template <class LandmarkType>
|
||||
bool IsLandmarkVisibleAndPresent(const LandmarkType &landmark,
|
||||
|
@ -198,116 +196,9 @@ namespace mediapipe
|
|||
|
||||
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
|
||||
|
||||
int image_width_ = image_mat->cols;
|
||||
int image_height_ = image_mat->rows;
|
||||
MP_RETURN_IF_ERROR(GetMasks(cc, all_masks, image_mat));
|
||||
|
||||
std::unordered_map<std::string, const std::vector<int>> orderList;
|
||||
orderList.insert(make_pair("UPPER_LIP", UPPER_LIP));
|
||||
orderList.insert(make_pair("LOWER_LIP", LOWER_LIP));
|
||||
orderList.insert(make_pair("FACE_OVAL", FACE_OVAL));
|
||||
orderList.insert(make_pair("MOUTH_INSIDE", MOUTH_INSIDE));
|
||||
orderList.insert(make_pair("LEFT_EYE", LEFT_EYE));
|
||||
orderList.insert(make_pair("RIGHT_EYE", RIGHT_EYE));
|
||||
orderList.insert(make_pair("LEFT_BROW", LEFT_BROW));
|
||||
orderList.insert(make_pair("RIGHT_BROW", RIGHT_BROW));
|
||||
orderList.insert(make_pair("LIPS", LIPS));
|
||||
orderList.insert(make_pair("PART_FOREHEAD_B", PART_FOREHEAD_B));
|
||||
|
||||
if (cc->Inputs().HasTag(kLandmarksTag))
|
||||
{
|
||||
const LandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kLandmarksTag).Get<LandmarkList>();
|
||||
|
||||
cv::Mat mask;
|
||||
std::vector<cv::Point> point_array;
|
||||
int c = 0;
|
||||
for (const auto &[key, value] : orderList)
|
||||
{
|
||||
for (auto order : value)
|
||||
{
|
||||
c = 0;
|
||||
for (int i = 0; i < landmarks.landmark_size(); ++i)
|
||||
{
|
||||
const Landmark &landmark = landmarks.landmark(i);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<Landmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (order == c)
|
||||
{
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
point_array.push_back(cv::Point(x, y));
|
||||
}
|
||||
c += 1;
|
||||
}
|
||||
}
|
||||
std::vector<std::vector<cv::Point>> point_vec;
|
||||
point_vec.push_back(point_array);
|
||||
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
|
||||
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
|
||||
mask.convertTo(mask, CV_8U);
|
||||
all_masks.insert(make_pair(key, mask));
|
||||
point_vec.clear();
|
||||
point_array.clear();
|
||||
}
|
||||
}
|
||||
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
{
|
||||
const NormalizedLandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Get<NormalizedLandmarkList>();
|
||||
|
||||
cv::Mat mask;
|
||||
std::vector<cv::Point> point_array;
|
||||
int c = 0;
|
||||
for (const auto &[key, value] : orderList)
|
||||
{
|
||||
for (auto order : value)
|
||||
{
|
||||
c = 0;
|
||||
for (int i = 0; i < landmarks.landmark_size(); ++i)
|
||||
{
|
||||
const NormalizedLandmark &landmark = landmarks.landmark(i);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (order == c)
|
||||
{
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
point_array.push_back(cv::Point(x, y));
|
||||
}
|
||||
c += 1;
|
||||
}
|
||||
}
|
||||
std::vector<std::vector<cv::Point>> point_vec;
|
||||
point_vec.push_back(point_array);
|
||||
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
|
||||
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
|
||||
mask.convertTo(mask, CV_8U);
|
||||
all_masks.insert(make_pair(key, mask));
|
||||
point_vec.clear();
|
||||
point_array.clear();
|
||||
}
|
||||
}
|
||||
MP_RETURN_IF_ERROR(GetFaceBox(cc, image_mat));
|
||||
|
||||
MP_RETURN_IF_ERROR(RenderToCpu(cc, all_masks));
|
||||
|
||||
|
@ -397,8 +288,96 @@ namespace mediapipe
|
|||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
/* absl::Status LandmarksToMaskCalculator::GetFaceBox(std::unique_ptr<cv::Mat> &image_mat,
|
||||
const RenderData &render_data)
|
||||
absl::Status LandmarksToMaskCalculator::GetMasks(CalculatorContext *cc,
|
||||
std::unordered_map<std::string, cv::Mat> &all_masks, std::unique_ptr<cv::Mat> &image_mat)
|
||||
{
|
||||
|
||||
int image_width_ = image_mat->cols;
|
||||
int image_height_ = image_mat->rows;
|
||||
|
||||
if (cc->Inputs().HasTag(kLandmarksTag))
|
||||
{
|
||||
const LandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Get<LandmarkList>();
|
||||
|
||||
cv::Mat mask;
|
||||
std::vector<cv::Point> point_array;
|
||||
for (const auto &[key, value] : orderList)
|
||||
{
|
||||
for (auto order : value)
|
||||
{
|
||||
const Landmark &landmark = landmarks.landmark(order);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<Landmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
point_array.push_back(cv::Point(x, y));
|
||||
}
|
||||
|
||||
std::vector<std::vector<cv::Point>> point_vec;
|
||||
point_vec.push_back(point_array);
|
||||
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
|
||||
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
|
||||
mask.convertTo(mask, CV_8U);
|
||||
all_masks.insert(make_pair(key, mask));
|
||||
point_vec.clear();
|
||||
point_array.clear();
|
||||
}
|
||||
}
|
||||
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
{
|
||||
const NormalizedLandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Get<NormalizedLandmarkList>();
|
||||
|
||||
cv::Mat mask;
|
||||
std::vector<cv::Point> point_array;
|
||||
for (const auto &[key, value] : orderList)
|
||||
{
|
||||
for (auto order : value)
|
||||
{
|
||||
const NormalizedLandmark &landmark = landmarks.landmark(order);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
point_array.push_back(cv::Point(x, y));
|
||||
}
|
||||
|
||||
std::vector<std::vector<cv::Point>> point_vec;
|
||||
point_vec.push_back(point_array);
|
||||
mask = cv::Mat::zeros(image_mat->size(), CV_32FC1);
|
||||
cv::fillPoly(mask, point_vec, cv::Scalar::all(255), cv::LINE_AA);
|
||||
mask.convertTo(mask, CV_8U);
|
||||
all_masks.insert(make_pair(key, mask));
|
||||
point_vec.clear();
|
||||
point_array.clear();
|
||||
}
|
||||
}
|
||||
return absl::OkStatus();
|
||||
}
|
||||
|
||||
absl::Status LandmarksToMaskCalculator::GetFaceBox(CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat)
|
||||
{
|
||||
cv::Mat mat_image_ = *image_mat.get();
|
||||
|
||||
|
@ -407,6 +386,10 @@ namespace mediapipe
|
|||
|
||||
std::vector<int> x_s, y_s;
|
||||
double box_min_y, box_max_y, box_max_x, box_min_x;
|
||||
if (cc->Inputs().HasTag(kLandmarksTag))
|
||||
{
|
||||
const LandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kLandmarksTag).Get<LandmarkList>();
|
||||
|
||||
for (int i = 0; i < landmarks.landmark_size(); ++i)
|
||||
{
|
||||
|
@ -420,31 +403,53 @@ namespace mediapipe
|
|||
continue;
|
||||
}
|
||||
|
||||
const auto &point = landmark.point();
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
if (point.normalized())
|
||||
{
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
}
|
||||
else
|
||||
{
|
||||
x = static_cast<int>(point.x() * scale_factor_);
|
||||
y = static_cast<int>(point.y() * scale_factor_);
|
||||
}
|
||||
x_s.push_back(point.x());
|
||||
x_s.push_back(point.y());
|
||||
}
|
||||
|
||||
}
|
||||
cv::minMaxLoc(y_s, &box_min_y, &box_max_y);
|
||||
cv::minMaxLoc(x_s, &box_min_x, &box_max_x);
|
||||
box_min_y = box_min_y * 0.9;
|
||||
face_box = std::make_tuple(box_min_x, box_min_y, box_max_x, box_max_y);
|
||||
}
|
||||
|
||||
if (cc->Inputs().HasTag(kNormLandmarksTag))
|
||||
{
|
||||
const NormalizedLandmarkList &landmarks =
|
||||
cc->Inputs().Tag(kNormLandmarksTag).Get<NormalizedLandmarkList>();
|
||||
|
||||
for (int i = 0; i < landmarks.landmark_size(); ++i)
|
||||
{
|
||||
const NormalizedLandmark &landmark = landmarks.landmark(i);
|
||||
|
||||
if (!IsLandmarkVisibleAndPresent<NormalizedLandmark>(
|
||||
landmark, false,
|
||||
0.0, false,
|
||||
0.0))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto &point = landmark;
|
||||
int x = -1;
|
||||
int y = -1;
|
||||
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
|
||||
image_height_, &x, &y));
|
||||
x_s.push_back(point.x());
|
||||
x_s.push_back(point.y());
|
||||
}
|
||||
cv::minMaxLoc(y_s, &box_min_y, &box_max_y);
|
||||
cv::minMaxLoc(x_s, &box_min_x, &box_max_x);
|
||||
box_min_y = box_min_y * 0.9;
|
||||
face_box = std::make_tuple(box_min_x, box_min_y, box_max_x, box_max_y);
|
||||
}
|
||||
|
||||
return absl::OkStatus();
|
||||
} */
|
||||
}
|
||||
|
||||
REGISTER_CALCULATOR(LandmarksToMaskCalculator);
|
||||
} // namespace mediapipe
|
||||
|
|
|
@ -24,22 +24,11 @@
|
|||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/util/color.pb.h"
|
||||
#include "mediapipe/util/render_data.pb.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "absl/strings/str_join.h"
|
||||
#include "mediapipe/framework/calculator_framework.h"
|
||||
#include "mediapipe/framework/calculator_options.pb.h"
|
||||
#include "mediapipe/framework/formats/image_format.pb.h"
|
||||
#include "mediapipe/framework/formats/image_frame.h"
|
||||
#include "mediapipe/framework/formats/image_frame_opencv.h"
|
||||
#include "mediapipe/framework/formats/landmark.pb.h"
|
||||
#include "mediapipe/framework/port/opencv_core_inc.h"
|
||||
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
|
||||
#include "mediapipe/framework/formats/location_data.pb.h"
|
||||
#include "mediapipe/framework/port/ret_check.h"
|
||||
#include "mediapipe/util/color.pb.h"
|
||||
#include "mediapipe/util/render_data.pb.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "mediapipe/framework/port/logging.h"
|
||||
#include "mediapipe/framework/port/status.h"
|
||||
#include "mediapipe/framework/port/vector.h"
|
||||
|
@ -85,8 +74,10 @@ namespace mediapipe
|
|||
absl::Status RenderToCpu(CalculatorContext *cc,
|
||||
std::unordered_map<std::string, cv::Mat> &all_masks);
|
||||
|
||||
absl::Status GetFaceBox(std::unique_ptr<cv::Mat> &image_mat,
|
||||
const RenderData &render_data);
|
||||
absl::Status GetFaceBox(CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat);
|
||||
|
||||
absl::Status GetMasks(CalculatorContext *cc, std::unordered_map<std::string, cv::Mat> &all_masks, std::unique_ptr<cv::Mat> &image_mat);
|
||||
|
||||
absl::Status CreateRenderTargetCpu(
|
||||
CalculatorContext *cc, std::unique_ptr<cv::Mat> &image_mat,
|
||||
ImageFormat::Format *target_format);
|
||||
|
|
|
@ -38,6 +38,8 @@ android_binary(
|
|||
assets = [
|
||||
"//mediapipe/graphs/image_style:mobile_gpu.binarypb",
|
||||
"//mediapipe/models:model_float32.tflite",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_with_attention.tflite",
|
||||
"//mediapipe/modules/face_detection:face_detection_short_range.tflite",
|
||||
],
|
||||
assets_dir = "",
|
||||
manifest = "//mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic:AndroidManifest.xml",
|
||||
|
@ -56,5 +58,7 @@ android_binary(
|
|||
deps = [
|
||||
":mediapipe_jni_lib",
|
||||
"//mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic:basic_lib",
|
||||
"//mediapipe/framework/formats:landmark_java_proto_lite",
|
||||
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -26,12 +26,17 @@ cc_library(
|
|||
deps = [
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_segmentation_calculator",
|
||||
"//mediapipe/calculators/util:to_image_calculator",
|
||||
"//mediapipe/calculators/util:from_image_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/tflite:tflite_custom_op_resolver_calculator",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
|
||||
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
||||
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -40,10 +45,16 @@ cc_library(
|
|||
deps = [
|
||||
"//mediapipe/calculators/core:flow_limiter_calculator",
|
||||
"//mediapipe/calculators/tensor:image_to_tensor_calculator",
|
||||
"//mediapipe/calculators/image:image_transformation_calculator",
|
||||
"//mediapipe/calculators/tensor:inference_calculator",
|
||||
"//mediapipe/calculators/tensor:tensor_converter_calculator",
|
||||
"//mediapipe/calculators/tensor:tensors_to_segmentation_calculator",
|
||||
"//mediapipe/calculators/util:to_image_calculator",
|
||||
"//mediapipe/calculators/util:from_image_calculator",
|
||||
"//mediapipe/modules/face_landmark:face_landmark_front_cpu",
|
||||
"//mediapipe/calculators/image_style:fast_utils_calculator",
|
||||
"//mediapipe/calculators/image:image_properties_calculator",
|
||||
"//mediapipe/calculators/core:constant_side_packet_calculator",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
|
@ -6,7 +6,6 @@ input_stream: "input_video"
|
|||
# Output image with rendered results. (ImageFrame)
|
||||
output_stream: "output_video"
|
||||
|
||||
|
||||
node {
|
||||
calculator: "FlowLimiterCalculator"
|
||||
input_stream: "input_video"
|
||||
|
@ -19,30 +18,57 @@ node {
|
|||
}
|
||||
|
||||
|
||||
node: {
|
||||
calculator: "ToImageCalculator"
|
||||
input_stream: "IMAGE_CPU:throttled_input_video"
|
||||
output_stream: "IMAGE:image_input_video"
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:0:num_faces"
|
||||
output_side_packet: "PACKET:1:with_attention"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { int_value: 1 }
|
||||
packet { bool_value: true }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Subgraph that detects faces and corresponding landmarks.
|
||||
node {
|
||||
calculator: "FaceLandmarkFrontCpu"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_side_packet: "NUM_FACES:num_faces"
|
||||
input_side_packet: "WITH_ATTENTION:with_attention"
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
input_stream: "IMAGE:image_input_video"
|
||||
output_stream: "TENSORS:input_tensor"
|
||||
options: {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 256
|
||||
output_tensor_height: 256
|
||||
keep_aspect_ratio: true
|
||||
output_tensor_float_range {
|
||||
min: -1.0
|
||||
max: 1.0
|
||||
calculator: "FastUtilsCalculator"
|
||||
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
output_stream: "IMAGE:out_image_frame"
|
||||
}
|
||||
border_mode: BORDER_ZERO
|
||||
|
||||
node: {
|
||||
calculator: "ImageTransformationCalculator"
|
||||
input_stream: "IMAGE:out_image_frame"
|
||||
output_stream: "IMAGE:transformed_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||
output_width: 256
|
||||
output_height: 256
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TensorConverterCalculator"
|
||||
input_stream: "IMAGE:transformed_input_video"
|
||||
output_stream: "TENSORS:input_tensor"
|
||||
options: {
|
||||
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
||||
zero_center: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "InferenceCalculator"
|
||||
|
@ -56,10 +82,16 @@ node {
|
|||
}
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "ImagePropertiesCalculator"
|
||||
input_stream: "IMAGE:transformed_input_video"
|
||||
output_stream: "SIZE:input_size"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TensorsToSegmentationCalculator"
|
||||
input_stream: "TENSORS:output_tensor"
|
||||
input_stream: "OUTPUT_SIZE:input_size"
|
||||
output_stream: "MASK:output"
|
||||
options: {
|
||||
[mediapipe.TensorsToSegmentationCalculatorOptions.ext] {
|
||||
|
|
|
@ -18,25 +18,81 @@ node {
|
|||
output_stream: "throttled_input_video"
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "ConstantSidePacketCalculator"
|
||||
output_side_packet: "PACKET:with_attention"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
|
||||
packet { bool_value: true }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node: {
|
||||
calculator: "ImageToTensorCalculator"
|
||||
calculator: "ImageTransformationCalculator"
|
||||
input_stream: "IMAGE_GPU:throttled_input_video"
|
||||
output_stream: "IMAGE_GPU:transformed_input_video"
|
||||
node_options: {
|
||||
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||||
output_width: 256
|
||||
output_height: 256
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Defines side packets for further use in the graph.
|
||||
node {
|
||||
calculator: "GpuBufferToImageFrameCalculator"
|
||||
input_stream: "transformed_input_video"
|
||||
output_stream: "throttled_input_video_cpu"
|
||||
}
|
||||
|
||||
# Subgraph that detects faces and corresponding landmarks.
|
||||
node {
|
||||
calculator: "FaceLandmarkFrontGpu"
|
||||
input_stream: "IMAGE:throttled_input_video"
|
||||
input_side_packet: "WITH_ATTENTION:with_attention"
|
||||
output_stream: "LANDMARKS:multi_face_landmarks"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "FastUtilsCalculator"
|
||||
input_stream: "NORM_LANDMARKS:multi_face_landmarks"
|
||||
input_stream: "IMAGE:throttled_input_video_cpu"
|
||||
output_stream: "IMAGE:out_image_frame"
|
||||
}
|
||||
|
||||
node {
|
||||
calculator: "TensorConverterCalculator"
|
||||
input_stream: "IMAGE:out_image_frame"
|
||||
output_stream: "TENSORS:input_tensors"
|
||||
options {
|
||||
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
output_tensor_width: 256
|
||||
output_tensor_height: 256
|
||||
keep_aspect_ratio: false
|
||||
output_tensor_float_range {
|
||||
min: -1.0
|
||||
max: 1.0
|
||||
}
|
||||
gpu_origin: TOP_LEFT
|
||||
border_mode: BORDER_REPLICATE
|
||||
options: {
|
||||
[mediapipe.TensorConverterCalculatorOptions.ext] {
|
||||
zero_center: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#node: {
|
||||
# calculator: "ImageToTensorCalculator"
|
||||
# input_stream: "IMAGE_GPU:throttled_input_video"
|
||||
# output_stream: "TENSORS:input_tensors"
|
||||
# options {
|
||||
# [mediapipe.ImageToTensorCalculatorOptions.ext] {
|
||||
# output_tensor_width: 256
|
||||
# output_tensor_height: 256
|
||||
# keep_aspect_ratio: false
|
||||
# output_tensor_float_range {
|
||||
# min: -1.0
|
||||
# max: 1.0
|
||||
# }
|
||||
# gpu_origin: TOP_LEFT
|
||||
# border_mode: BORDER_REPLICATE
|
||||
# }
|
||||
# }
|
||||
#}
|
||||
|
||||
|
||||
|
||||
node {
|
||||
|
@ -46,7 +102,7 @@ node {
|
|||
options: {
|
||||
[mediapipe.InferenceCalculatorOptions.ext] {
|
||||
model_path:"mediapipe/models/model_float32.tflite"
|
||||
delegate { xnnpack {} }
|
||||
delegate { gpu {} }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user