Refactored

This commit is contained in:
mslight 2022-07-13 18:42:00 +04:00
parent dfce9154f1
commit 0b4954e6c7
15 changed files with 385 additions and 1242 deletions

View File

@ -0,0 +1,63 @@
# Copyright 2019 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
licenses(["notice"])
package(default_visibility = ["//visibility:private"])
cc_binary(
name = "libmediapipe_jni.so",
linkshared = 1,
linkstatic = 1,
deps = [
"//mediapipe/graphs/beauty:mobile_calculators_single",
"//mediapipe/java/com/google/mediapipe/framework/jni:mediapipe_framework_jni",
],
)
cc_library(
name = "mediapipe_jni_lib",
srcs = [":libmediapipe_jni.so"],
alwayslink = 1,
)
android_binary(
name = "beautygpusingle",
srcs = glob(["*.java"]),
assets = [
"//mediapipe/graphs/beauty:beauty_mobile_single.binarypb",
"//mediapipe/modules/face_landmark:face_landmark_with_attention.tflite",
"//mediapipe/modules/face_detection:face_detection_short_range.tflite",
],
assets_dir = "",
manifest = "//mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic:AndroidManifest.xml",
manifest_values = {
"applicationId": "com.google.mediapipe.apps.beautygpusingle",
"appName": "BeautySingle",
"mainActivity": ".MainActivity",
"cameraFacingFront": "True",
"binaryGraphName": "beauty_mobile_single.binarypb",
"inputVideoStreamName": "input_video",
"outputVideoStreamName": "output_video",
"flipFramesVertically": "True",
"converterNumBuffers": "2",
},
multidex = "native",
deps = [
":mediapipe_jni_lib",
"//mediapipe/examples/android/src/java/com/google/mediapipe/apps/basic:basic_lib",
"//mediapipe/framework/formats:landmark_java_proto_lite",
"//mediapipe/java/com/google/mediapipe/framework:android_framework",
],
)

View File

@ -0,0 +1,93 @@
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.mediapipe.apps.beautygpusingle;
import android.os.Bundle;
import android.util.Log;
import com.google.mediapipe.formats.proto.LandmarkProto.NormalizedLandmark;
import com.google.mediapipe.formats.proto.LandmarkProto.NormalizedLandmarkList;
import com.google.mediapipe.framework.AndroidPacketCreator;
import com.google.mediapipe.framework.Packet;
import com.google.mediapipe.framework.PacketGetter;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/** Main activity of MediaPipe face mesh app. */
public class MainActivity extends com.google.mediapipe.apps.basic.MainActivity {
private static final String TAG = "MainActivity";
private static final String INPUT_NUM_FACES_SIDE_PACKET_NAME = "num_faces";
private static final String OUTPUT_LANDMARKS_STREAM_NAME = "multi_face_landmarks";
// Max number of faces to detect/process.
private static final int NUM_FACES = 1;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
AndroidPacketCreator packetCreator = processor.getPacketCreator();
Map<String, Packet> inputSidePackets = new HashMap<>();
inputSidePackets.put(INPUT_NUM_FACES_SIDE_PACKET_NAME, packetCreator.createInt32(NUM_FACES));
processor.setInputSidePackets(inputSidePackets);
// To show verbose logging, run:
// adb shell setprop log.tag.MainActivity VERBOSE
if (Log.isLoggable(TAG, Log.VERBOSE)) {
processor.addPacketCallback(
OUTPUT_LANDMARKS_STREAM_NAME,
(packet) -> {
Log.v(TAG, "Received multi face landmarks packet.");
List<NormalizedLandmarkList> multiFaceLandmarks =
PacketGetter.getProtoVector(packet, NormalizedLandmarkList.parser());
Log.v(
TAG,
"[TS:"
+ packet.getTimestamp()
+ "] "
+ getMultiFaceLandmarksDebugString(multiFaceLandmarks));
});
}
}
private static String getMultiFaceLandmarksDebugString(
List<NormalizedLandmarkList> multiFaceLandmarks) {
if (multiFaceLandmarks.isEmpty()) {
return "No face landmarks";
}
String multiFaceLandmarksStr = "Number of faces detected: " + multiFaceLandmarks.size() + "\n";
int faceIndex = 0;
for (NormalizedLandmarkList landmarks : multiFaceLandmarks) {
multiFaceLandmarksStr +=
"\t#Face landmarks for face[" + faceIndex + "]: " + landmarks.getLandmarkCount() + "\n";
int landmarkIndex = 0;
for (NormalizedLandmark landmark : landmarks.getLandmarkList()) {
multiFaceLandmarksStr +=
"\t\tLandmark ["
+ landmarkIndex
+ "]: ("
+ landmark.getX()
+ ", "
+ landmark.getY()
+ ", "
+ landmark.getZ()
+ ")\n";
++landmarkIndex;
}
++faceIndex;
}
return multiFaceLandmarksStr;
}
}

View File

@ -33,10 +33,10 @@ cc_binary(
)
cc_binary(
name = "beauty_cpu_over",
name = "beauty_cpu_single",
deps = [
"//mediapipe/examples/desktop:demo_run_graph_main",
"//mediapipe/graphs/beauty:desktop_live_over_calculators",
"//mediapipe/graphs/beauty:desktop_live_single_calculators",
],
)

View File

@ -96,7 +96,7 @@ absl::Status RunMPPGraph() {
break;
}
cv::Mat camera_frame;
cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGB);
cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGBA);
if (!load_video) {
cv::flip(camera_frame, camera_frame, /*flipcode=HORIZONTAL*/ 1);
}

View File

@ -21,17 +21,6 @@ licenses(["notice"])
package(default_visibility = ["//visibility:public"])
cc_library(
name = "desktop_calculators",
deps = [
"//mediapipe/calculators/core:constant_side_packet_calculator",
"//mediapipe/calculators/video:opencv_video_decoder_calculator",
"//mediapipe/calculators/video:opencv_video_encoder_calculator",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu",
"//mediapipe/modules/face_landmark:face_landmark_front_cpu",
],
)
cc_library(
name = "desktop_live_calculators",
deps = [
@ -43,12 +32,12 @@ cc_library(
)
cc_library(
name = "desktop_live_over_calculators",
name = "desktop_live_single_calculators",
deps = [
"//mediapipe/calculators/core:constant_side_packet_calculator",
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu_over",
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu_single",
"//mediapipe/modules/face_landmark:face_landmark_front_cpu",
],
)
@ -68,19 +57,18 @@ cc_library(
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
"//mediapipe/gpu:image_frame_to_gpu_buffer_calculator",
"//mediapipe/calculators/core:flow_limiter_calculator",
#"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu",
"//mediapipe/graphs/face_mesh/subgraphs:face_renderer_cpu",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu",
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
],
)
cc_library(
name = "mobile_calculators_over",
name = "mobile_calculators_single",
deps = [
"//mediapipe/gpu:gpu_buffer_to_image_frame_calculator",
"//mediapipe/gpu:image_frame_to_gpu_buffer_calculator",
"//mediapipe/calculators/core:flow_limiter_calculator",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_gpu_over",
"//mediapipe/graphs/beauty/subgraphs:face_renderer_cpu_single",
"//mediapipe/modules/face_landmark:face_landmark_front_gpu",
],
)
@ -94,9 +82,9 @@ mediapipe_binary_graph(
)
mediapipe_binary_graph(
name = "beauty_mobile_over_binary_graph",
graph = "beauty_over.pbtxt",
output_name = "beauty_mobile_over.binarypb",
deps = [":mobile_calculators_over"],
name = "beauty_mobile_single_binary_graph",
graph = "beauty_mobile_single.pbtxt",
output_name = "beauty_mobile_single.binarypb",
deps = [":mobile_calculators_single"],
)

View File

@ -0,0 +1,66 @@
# Beauty
this graph performs face processing
## Getting started
Clone branch.
1. Desktop-CPU (Divided calculators)
Build with:
```
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/beauty:beauty_cpu
```
Run with (using your camera):
```
bazel-bin/mediapipe/examples/desktop/beauty/beauty_cpu
--calculator_graph_config_file=mediapipe/graphs/beauty/beauty_desktop_cpu.pbtxt
```
Run with (using video):
```
bazel-bin/mediapipe/examples/desktop/beauty/beauty_cpu
--calculator_graph_config_file=mediapipe/graphs/beauty/beauty_desktop_cpu.pbtxt
--input_video_path=/path/video.mp4
--output_video_path=/path/outvideo.mp4
```
2. Desktop-CPU-Single (Not divided, using render data)
Build with:
```
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/beauty:beauty_cpu_single
```
Run with (using your camera):
```
bazel-bin/mediapipe/examples/desktop/beauty/beauty_cpu_single
--calculator_graph_config_file=mediapipe/graphs/beauty/beauty_desktop_cpu_single.pbtxt
```
Run with (using video):
```
bazel-bin/mediapipe/examples/desktop/beauty/beauty_cpu_single
--calculator_graph_config_file=mediapipe/graphs/beauty/beauty_desktop_cpu_single.pbtxt
--input_video_path=/path/video.mp4
--output_video_path=/path/outvideo.mp4
```
3. Mobile (Android)
Build with:
```
bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/beauty:beautygpu
```
Install with:
```
adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/beauty/beautygpu.apk
```
4. Mobile-Single (Android)
Build with:
```
bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/beauty_single:beautygpusingle
```
Install with:
```
adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/beauty_single/beautygpusingle.apk
```

View File

@ -9,16 +9,7 @@ output_stream: "output_video"
# landmarks. (std::vector<NormalizedLandmarkList>)
output_stream: "multi_face_landmarks"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"

View File

@ -9,6 +9,7 @@ output_stream: "output_video"
# landmarks. (std::vector<NormalizedLandmarkList>)
output_stream: "multi_face_landmarks"
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
@ -20,6 +21,7 @@ node {
output_stream: "throttled_input_video"
}
# Defines side packets for further use in the graph.
node {
calculator: "ConstantSidePacketCalculator"
output_side_packet: "PACKET:0:num_faces"
@ -41,9 +43,9 @@ node {
output_stream: "LANDMARKS:multi_face_landmarks"
}
# Subgraph that renders onto the input image.
# Subgraph that renders face-landmark annotation onto the input image.
node {
calculator: "FaceRendererCpu"
calculator: "FaceRendererCpuSingle"
input_stream: "IMAGE:throttled_input_video"
input_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "IMAGE:output_video"

View File

@ -0,0 +1,76 @@
# MediaPipe graph that performs face mesh with TensorFlow Lite on GPU.
# GPU buffer. (GpuBuffer)
input_stream: "input_video"
# Max number of faces to detect/process. (int)
input_side_packet: "num_faces"
# Output image with rendered results. (GpuBuffer)
output_stream: "output_video"
# Collection of detected/processed faces, each represented as a list of
# landmarks. (std::vector<NormalizedLandmarkList>)
output_stream: "multi_face_landmarks"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Defines side packets for further use in the graph.
node {
calculator: "ConstantSidePacketCalculator"
output_side_packet: "PACKET:with_attention"
node_options: {
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
packet { bool_value: true }
}
}
}
# Defines side packets for further use in the graph.
node {
calculator: "GpuBufferToImageFrameCalculator"
input_stream: "throttled_input_video"
output_stream: "throttled_input_video_cpu"
}
# Subgraph that detects faces and corresponding landmarks.
node {
calculator: "FaceLandmarkFrontGpu"
input_stream: "IMAGE:throttled_input_video"
input_side_packet: "NUM_FACES:num_faces"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:multi_face_landmarks"
}
# Subgraph that renders face-landmark annotation onto the input image.
node {
calculator: "FaceRendererCpuSingle"
input_stream: "IMAGE:throttled_input_video_cpu"
input_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "IMAGE:output_video_cpu"
}
# Defines side packets for further use in the graph.
node {
calculator: "ImageFrameToGpuBufferCalculator"
input_stream: "output_video_cpu"
output_stream: "output_video"
}

View File

@ -1,953 +0,0 @@
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/util/annotation_renderer.h"
#include <math.h>
#include <algorithm>
#include <cmath>
//#include <android/log.h>
#include "mediapipe/framework/port/logging.h"
#include "mediapipe/framework/port/vector.h"
#include "mediapipe/util/color.pb.h"
namespace mediapipe {
namespace {
using Arrow = RenderAnnotation::Arrow;
using FilledOval = RenderAnnotation::FilledOval;
using FilledRectangle = RenderAnnotation::FilledRectangle;
using FilledRoundedRectangle = RenderAnnotation::FilledRoundedRectangle;
using Point = RenderAnnotation::Point;
using Line = RenderAnnotation::Line;
using GradientLine = RenderAnnotation::GradientLine;
using Oval = RenderAnnotation::Oval;
using Rectangle = RenderAnnotation::Rectangle;
using RoundedRectangle = RenderAnnotation::RoundedRectangle;
using Text = RenderAnnotation::Text;
static const std::vector<int> UPPER_LIP = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 308, 415, 310, 311, 312, 13, 82, 81, 80, 191, 78};
static const std::vector<int> LOWER_LIP = {61, 78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
static const std::vector<int> FACE_OVAL = {10, 338, 338, 297, 297, 332, 332, 284, 284, 251, 251, 389, 389, 356, 356,
454, 454, 323, 323, 361, 361, 288, 288, 397, 397, 365, 365, 379, 379, 378,
378, 400, 400, 377, 377, 152, 152, 148, 148, 176, 176, 149, 149, 150, 150,
136, 136, 172, 172, 58, 58, 132, 132, 93, 93, 234, 234, 127, 127, 162, 162,
21, 21, 54, 54, 103, 103, 67, 67, 109, 109, 10};
static const std::vector<int> MOUTH_INSIDE = {78, 191, 80, 81, 13, 312, 311, 310, 415, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95};
static const std::vector<int> PART_FOREHEAD_B = {21, 54, 103, 67, 109, 10, 338, 297, 332, 284, 251, 301, 293, 334, 296, 336, 9, 107, 66, 105, 63, 71};
static const std::vector<int> LEFT_EYE = {130, 33, 246, 161, 160, 159, 157, 173, 133, 155, 154, 153, 145, 144, 163, 7};
static const std::vector<int> RIGHT_EYE = {362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380, 381, 382};
static const std::vector<int> LIPS = {61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146};
static const std::vector<int> LEFT_BROW = {70, 63, 105, 66, 107, 55, 65, 52, 53, 46};
static const std::vector<int> RIGHT_BROW = {336, 296, 334, 293, 301, 300, 283, 282, 295, 285};
int ClampThickness(int thickness) {
constexpr int kMaxThickness = 32767; // OpenCV MAX_THICKNESS
return std::clamp(thickness, 1, kMaxThickness);
}
bool NormalizedtoPixelCoordinates(double normalized_x, double normalized_y,
int image_width, int image_height, int* x_px,
int* y_px) {
CHECK(x_px != nullptr);
CHECK(y_px != nullptr);
CHECK_GT(image_width, 0);
CHECK_GT(image_height, 0);
if (normalized_x < 0 || normalized_x > 1.0 || normalized_y < 0 ||
normalized_y > 1.0) {
VLOG(1) << "Normalized coordinates must be between 0.0 and 1.0";
}
*x_px = static_cast<int32>(round(normalized_x * image_width));
*y_px = static_cast<int32>(round(normalized_y * image_height));
return true;
}
cv::Scalar MediapipeColorToOpenCVColor(const Color& color) {
return cv::Scalar(color.r(), color.g(), color.b());
}
cv::RotatedRect RectangleToOpenCVRotatedRect(int left, int top, int right,
int bottom, double rotation) {
return cv::RotatedRect(
cv::Point2f((left + right) / 2.f, (top + bottom) / 2.f),
cv::Size2f(right - left, bottom - top), rotation / M_PI * 180.f);
}
void cv_line2(cv::Mat& img, const cv::Point& start, const cv::Point& end,
const cv::Scalar& color1, const cv::Scalar& color2,
int thickness) {
cv::LineIterator iter(img, start, end, /*cv::LINE_4=*/4);
for (int i = 0; i < iter.count; i++, iter++) {
const double alpha = static_cast<double>(i) / iter.count;
const cv::Scalar new_color(color1 * (1.0 - alpha) + color2 * alpha);
const cv::Rect rect(iter.pos(), cv::Size(thickness, thickness));
cv::rectangle(img, rect, new_color, /*cv::FILLED=*/-1, /*cv::LINE_4=*/4);
}
}
} // namespace
void AnnotationRenderer::RenderDataOnImage(const RenderData &render_data)
{
if (render_data.render_annotations().size()){
DrawLipstick(render_data);
WhitenTeeth(render_data);
smooth_face(render_data);
}
else
{
LOG(FATAL) << "Unknown annotation type: ";
}
}
void AnnotationRenderer::AdoptImage(cv::Mat* input_image) {
image_width_ = input_image->cols;
image_height_ = input_image->rows;
// No pixel data copy here, only headers are copied.
mat_image_ = *input_image;
}
int AnnotationRenderer::GetImageWidth() const { return mat_image_.cols; }
int AnnotationRenderer::GetImageHeight() const { return mat_image_.rows; }
void AnnotationRenderer::SetFlipTextVertically(bool flip) {
flip_text_vertically_ = flip;
}
void AnnotationRenderer::SetScaleFactor(float scale_factor) {
if (scale_factor > 0.0f) scale_factor_ = std::min(scale_factor, 1.0f);
}
cv::Mat AnnotationRenderer::FormFacePartMask(std::vector<int> orderList, const RenderData &render_data)
{
int c = 0;
std::vector<cv::Point> point_array;
for (auto order : orderList)
{
c = 0;
for (auto &annotation : render_data.render_annotations())
{
if (annotation.data_case() == RenderAnnotation::kPoint)
{
if (order == c)
{
const auto &point = annotation.point();
int x = -1;
int y = -1;
if (point.normalized())
{
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
}
else
{
x = static_cast<int>(point.x() * scale_factor_);
y = static_cast<int>(point.y() * scale_factor_);
}
point_array.push_back(cv::Point(x, y));
}
c += 1;
}
}
}
cv::Mat mask;
std::vector<std::vector<cv::Point>> point;
point.push_back(point_array);
mask = cv::Mat::zeros(mat_image_.size(), CV_32F);
cv::fillPoly(mask, point, cv::Scalar::all(255), cv::LINE_AA);
mask.convertTo(mask, CV_8U);
return mask;
}
std::tuple<double, double, double, double> AnnotationRenderer::GetFaceBox(const RenderData &render_data)
{
std::vector<int> x_s, y_s;
double box_min_y, box_max_y, box_max_x, box_min_x;
for (auto &annotation : render_data.render_annotations())
{
if (annotation.data_case() == RenderAnnotation::kPoint)
{
const auto &point = annotation.point();
int x = -1;
int y = -1;
if (point.normalized())
{
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
}
else
{
x = static_cast<int>(point.x() * scale_factor_);
y = static_cast<int>(point.y() * scale_factor_);
}
x_s.push_back(point.x());
x_s.push_back(point.y());
}
}
cv::minMaxLoc(y_s, &box_min_y, &box_max_y);
cv::minMaxLoc(x_s, &box_min_x, &box_max_x);
box_min_y = box_min_y * 0.9;
return std::make_tuple(box_min_x, box_min_y, box_max_x, box_max_y);
}
cv::Mat AnnotationRenderer::predict_forehead_mask(const RenderData &render_data, double face_box_min_y)
{
cv::Mat part_forehead_mask = AnnotationRenderer::FormFacePartMask(PART_FOREHEAD_B, render_data);
part_forehead_mask.convertTo(part_forehead_mask, CV_32F, 1.0 / 255);
part_forehead_mask.convertTo(part_forehead_mask, CV_8U);
cv::Mat image_sm, image_sm_hsv, skinMask;
cv::resize(mat_image_, image_sm, cv::Size(mat_image_.size().width, mat_image_.size().height));
cv::cvtColor(image_sm, image_sm_hsv, cv::COLOR_BGR2HSV);
std::vector<int> x, y;
std::vector<cv::Point> location;
// std::cout << "R (numpy) = " << std::endl << cv::format(part_forehead_mask, cv::Formatter::FMT_NUMPY ) << std::endl << std::endl;
cv::Vec3d hsv_min, hsv_max;
std::vector<cv::Mat> channels(3);
cv::split(image_sm_hsv, channels);
std::vector<std::vector<double>> minx(3), maxx(3);
int c = 0;
for (auto ch : channels)
{
cv::Mat row, mask_row;
double min, max;
for (int i = 0; i < ch.rows; i++)
{
row = ch.row(i);
mask_row = part_forehead_mask.row(i);
cv::minMaxLoc(row, &min, &max, 0, 0, mask_row);
minx[c].push_back(min);
maxx[c].push_back(max);
}
c++;
}
for (int i = 0; i < 3; i++)
{
hsv_min[i] = *std::min_element(minx[i].begin(), minx[i].end());
}
for (int i = 0; i < 3; i++)
{
hsv_max[i] = *std::max_element(maxx[i].begin(), maxx[i].end());
}
cv::Mat _forehead_kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(1, 1));
cv::inRange(image_sm_hsv, hsv_min, hsv_max, skinMask);
cv::erode(skinMask, skinMask, _forehead_kernel, cv::Point(-1, -1), 2);
cv::dilate(skinMask, skinMask, _forehead_kernel, cv::Point(-1, -1), 2);
skinMask.convertTo(skinMask, CV_8U, 1.0 / 255);
cv::findNonZero(skinMask, location);
double max_part_f, x_min_part, x_max_part;
for (auto &i : location)
{
x.push_back(i.x);
y.push_back(i.y);
}
cv::minMaxLoc(y, NULL, &max_part_f);
cv::minMaxLoc(x, &x_min_part, &x_max_part);
cv::Mat new_skin_mask = cv::Mat::zeros(skinMask.size(), CV_8U);
new_skin_mask(cv::Range(face_box_min_y, max_part_f), cv::Range(x_min_part, x_max_part)) =
skinMask(cv::Range(face_box_min_y, max_part_f), cv::Range(x_min_part, x_max_part));
return new_skin_mask;
}
void AnnotationRenderer::smooth_face(const RenderData &render_data)
{
cv::Mat not_full_face = cv::Mat(FormFacePartMask(FACE_OVAL, render_data)) +
cv::Mat(predict_forehead_mask(render_data, std::get<1>(GetFaceBox(render_data)))) -
cv::Mat(FormFacePartMask(LEFT_EYE, render_data)) -
cv::Mat(FormFacePartMask(RIGHT_EYE, render_data)) -
cv::Mat(FormFacePartMask(LEFT_BROW, render_data)) -
cv::Mat(FormFacePartMask(RIGHT_BROW, render_data)) -
cv::Mat(FormFacePartMask(LIPS, render_data));
cv::resize(not_full_face,
not_full_face,
mat_image_.size(), 0, 0,
cv::INTER_LINEAR);
std::vector<int> x, y;
std::vector<cv::Point> location;
cv::findNonZero(not_full_face, location);
double min_y, min_x, max_x, max_y;
for (auto &i : location)
{
x.push_back(i.x);
y.push_back(i.y);
}
cv::minMaxLoc(x, &min_x, &max_x);
cv::minMaxLoc(y, &min_y, &max_y);
cv::Mat patch_face = mat_image_(cv::Range(min_y, max_y), cv::Range(min_x, max_x));
cv::Mat patch_nff = not_full_face(cv::Range(min_y, max_y), cv::Range(min_x, max_x));
cv::Mat patch_new;
cv::bilateralFilter(patch_face, patch_new, 12, 50, 50);
cv::Mat patch_new_nff, patch_new_mask, patch, patch_face_nff;
patch_new.copyTo(patch_new_nff, patch_nff);
patch_face.copyTo(patch_face_nff, patch_nff);
patch_new_mask = 0.85 * patch_new_nff + 0.15 * patch_face_nff;
patch = cv::min(255, patch_new_mask);
patch.copyTo(patch_face, patch_nff);
}
cv::Mat matmul32F(cv::Mat& bgr, cv::Mat& mask)
{
assert(bgr.type() == CV_32FC3 && mask.type() == CV_32FC1 && bgr.size() == mask.size());
int H = bgr.rows;
int W = bgr.cols;
cv::Mat dst(bgr.size(), bgr.type());
if (bgr.isContinuous() && mask.isContinuous())
{
W *= H;
H = 1;
}
for( int i = 0; i < H; ++i)
{
float* pdst = ((float*)dst.data)+i*W*3;
float* pbgr = ((float*)bgr.data)+i*W*3;
float* pmask = ((float*)mask.data) + i*W;
for ( int j = 0; j < W; ++j)
{
(*pdst++) = (*pbgr++) *(*pmask);
(*pdst++) = (*pbgr++) *(*pmask);
(*pdst++) = (*pbgr++) *(*pmask);
pmask+=1;
}
}
return dst;
}
void AnnotationRenderer::DrawLipstick(const RenderData &render_data)
{
cv::Mat spec_lips_mask, upper_lips_mask, lower_lips_mask;
spec_lips_mask = cv::Mat::zeros(mat_image_.size(), CV_32F);
upper_lips_mask = cv::Mat::zeros(mat_image_.size(), CV_32F);
lower_lips_mask = cv::Mat::zeros(mat_image_.size(), CV_32F);
upper_lips_mask = AnnotationRenderer::FormFacePartMask(UPPER_LIP, render_data);
lower_lips_mask = AnnotationRenderer::FormFacePartMask(LOWER_LIP, render_data);
spec_lips_mask = upper_lips_mask + lower_lips_mask;
spec_lips_mask.convertTo(spec_lips_mask, CV_8U);
cv::resize(spec_lips_mask, spec_lips_mask, mat_image_.size(), cv::INTER_LINEAR);
std::vector<int> x, y;
std::vector<cv::Point> location;
cv::findNonZero(spec_lips_mask, location);
for (auto &i : location)
{
x.push_back(i.x);
y.push_back(i.y);
}
if (!(x.empty()) && !(y.empty()))
{
double min_y, max_y, max_x, min_x;
cv::minMaxLoc(y, &min_y, &max_y);
cv::minMaxLoc(x, &min_x, &max_x);
cv::Mat lips_crop_mask = spec_lips_mask(cv::Range(min_y, max_y), cv::Range(min_x, max_x));
lips_crop_mask.convertTo(lips_crop_mask, CV_32F, 1.0 / 255);
cv::Mat lips_crop = cv::Mat(mat_image_(cv::Range(min_y, max_y), cv::Range(min_x, max_x)).size(), CV_8UC3);
mat_image_(cv::Range(min_y, max_y), cv::Range(min_x, max_x)).copyTo(lips_crop);
lips_crop.convertTo(lips_crop, CV_32FC3);
cv::Mat lips_blend;
lips_blend = cv::Mat(lips_crop.size().height, lips_crop.size().width, CV_32FC3, cv::Scalar(255.0, 0, 0));
lips_crop_mask *= 50;
lips_crop_mask.convertTo(lips_crop_mask, CV_32F, 1.0 / 255);
lips_blend = matmul32F(lips_blend, lips_crop_mask);
cv::Mat tmp_crop_mask = 1.0 - lips_crop_mask;
cv::Mat slice = mat_image_(cv::Range(min_y, max_y), cv::Range(min_x, max_x));
lips_crop = matmul32F(lips_crop, tmp_crop_mask);
cv::add(lips_blend, lips_crop, slice, cv::noArray(), CV_8U);
}
}
void AnnotationRenderer::WhitenTeeth(const RenderData &render_data)
{
cv::Mat mouth_mask, mouth;
mouth_mask = cv::Mat::zeros(mat_image_.size(), CV_32F);
mouth_mask = AnnotationRenderer::FormFacePartMask(MOUTH_INSIDE, render_data);
cv::resize(mouth_mask, mouth, mat_image_.size(), cv::INTER_LINEAR);
std::vector<int> x, y;
std::vector<cv::Point> location;
cv::findNonZero(mouth, location);
for (auto &i : location)
{
x.push_back(i.x);
y.push_back(i.y);
}
if (!(x.empty()) && !(y.empty()))
{
double mouth_min_y, mouth_max_y, mouth_max_x, mouth_min_x;
cv::minMaxLoc(y, &mouth_min_y, &mouth_max_y);
cv::minMaxLoc(x, &mouth_min_x, &mouth_max_x);
double mh = mouth_max_y - mouth_min_y;
double mw = mouth_max_x - mouth_min_x;
cv::Mat mouth_crop_mask;
mouth.convertTo(mouth, CV_32F, 1.0 / 255);
mouth.convertTo(mouth, CV_32F, 1.0 / 255);
if (mh / mw > 0.17)
{
mouth_min_y = static_cast<int>(std::max(mouth_min_y - mh * 0.1, 0.0));
mouth_max_y = static_cast<int>(std::min(mouth_max_y + mh * 0.1, (double)image_height_));
mouth_min_x = static_cast<int>(std::max(mouth_min_x - mw * 0.1, 0.0));
mouth_max_x = static_cast<int>(std::min(mouth_max_x + mw * 0.1, (double)image_width_));
mouth_crop_mask = mouth(cv::Range(mouth_min_y, mouth_max_y), cv::Range(mouth_min_x, mouth_max_x));
cv::Mat img_hsv, tmp_mask, img_hls;
cv::cvtColor(mat_image_(cv::Range(mouth_min_y, mouth_max_y), cv::Range(mouth_min_x, mouth_max_x)), img_hsv,
cv::COLOR_RGB2HSV);
cv::Mat _mouth_erode_kernel = cv::getStructuringElement(
cv::MORPH_ELLIPSE, cv::Size(7, 7));
cv::erode(mouth_crop_mask * 255, tmp_mask, _mouth_erode_kernel, cv::Point(-1, -1), 3);
cv::GaussianBlur(tmp_mask, tmp_mask, cv::Size(51, 51), 0);
img_hsv.convertTo(img_hsv, CV_8U);
std::vector<cv::Mat> channels(3);
cv::split(img_hsv, channels);
cv::Mat tmp;
cv::multiply(channels[1], tmp_mask, tmp, 0.3, CV_8U);
cv::subtract(channels[1], tmp, channels[1], cv::noArray(), CV_8U);
channels[1] = cv::min(255, channels[1]);
cv::merge(channels, img_hsv);
cv::cvtColor(img_hsv, img_hsv, cv::COLOR_HSV2RGB);
cv::cvtColor(img_hsv, img_hls, cv::COLOR_RGB2HLS);
cv::split(img_hls, channels);
cv::multiply(channels[1], tmp_mask, tmp, 0.3, CV_8U);
cv::add(channels[1], tmp, channels[1], cv::noArray(), CV_8U);
channels[1] = cv::min(255, channels[1]);
cv::merge(channels, img_hls);
cv::cvtColor(img_hls, img_hls, cv::COLOR_HLS2RGB);
// std::cout << "R (numpy) = " << std::endl << cv::format(img_hls, cv::Formatter::FMT_NUMPY ) << std::endl << std::endl;
cv::Mat slice = mat_image_(cv::Range(mouth_min_y, mouth_max_y), cv::Range(mouth_min_x, mouth_max_x));
img_hls.copyTo(slice);
}
}
}
void AnnotationRenderer::DrawRectangle(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.rectangle();
if (rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
CHECK(NormalizedtoPixelCoordinates(rectangle.right(), rectangle.bottom(),
image_width_, image_height_, &right,
&bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
if (rectangle.rotation() != 0.0) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices[kNumVertices];
rect.points(vertices);
for (int i = 0; i < kNumVertices; i++) {
cv::line(mat_image_, vertices[i], vertices[(i + 1) % kNumVertices], color,
thickness);
}
} else {
cv::Rect rect(left, top, right - left, bottom - top);
cv::rectangle(mat_image_, rect, color, thickness);
}
if (rectangle.has_top_left_thickness()) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices[kNumVertices];
rect.points(vertices);
const int top_left_thickness =
ClampThickness(round(rectangle.top_left_thickness() * scale_factor_));
cv::ellipse(mat_image_, vertices[1],
cv::Size(top_left_thickness, top_left_thickness), 0.0, 0, 360,
color, -1);
}
}
void AnnotationRenderer::DrawFilledRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.filled_rectangle().rectangle();
if (rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
CHECK(NormalizedtoPixelCoordinates(rectangle.right(), rectangle.bottom(),
image_width_, image_height_, &right,
&bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
if (rectangle.rotation() != 0.0) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices2f[kNumVertices];
rect.points(vertices2f);
// Convert cv::Point2f[] to cv::Point[].
cv::Point vertices[kNumVertices];
for (int i = 0; i < kNumVertices; ++i) {
vertices[i] = vertices2f[i];
}
cv::fillConvexPoly(mat_image_, vertices, kNumVertices, color);
} else {
cv::Rect rect(left, top, right - left, bottom - top);
cv::rectangle(mat_image_, rect, color, -1);
}
}
void AnnotationRenderer::DrawRoundedRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.rounded_rectangle().rectangle();
if (rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
CHECK(NormalizedtoPixelCoordinates(rectangle.right(), rectangle.bottom(),
image_width_, image_height_, &right,
&bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const int corner_radius =
round(annotation.rounded_rectangle().corner_radius() * scale_factor_);
const int line_type = annotation.rounded_rectangle().line_type();
DrawRoundedRectangle(mat_image_, cv::Point(left, top),
cv::Point(right, bottom), color, thickness, line_type,
corner_radius);
}
void AnnotationRenderer::DrawFilledRoundedRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle =
annotation.filled_rounded_rectangle().rounded_rectangle().rectangle();
if (rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
CHECK(NormalizedtoPixelCoordinates(rectangle.right(), rectangle.bottom(),
image_width_, image_height_, &right,
&bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int corner_radius =
annotation.rounded_rectangle().corner_radius() * scale_factor_;
const int line_type = annotation.rounded_rectangle().line_type();
DrawRoundedRectangle(mat_image_, cv::Point(left, top),
cv::Point(right, bottom), color, -1, line_type,
corner_radius);
}
void AnnotationRenderer::DrawRoundedRectangle(cv::Mat src, cv::Point top_left,
cv::Point bottom_right,
const cv::Scalar& line_color,
int thickness, int line_type,
int corner_radius) {
// Corners:
// p1 - p2
// | |
// p4 - p3
cv::Point p1 = top_left;
cv::Point p2 = cv::Point(bottom_right.x, top_left.y);
cv::Point p3 = bottom_right;
cv::Point p4 = cv::Point(top_left.x, bottom_right.y);
// Draw edges of the rectangle
cv::line(src, cv::Point(p1.x + corner_radius, p1.y),
cv::Point(p2.x - corner_radius, p2.y), line_color, thickness,
line_type);
cv::line(src, cv::Point(p2.x, p2.y + corner_radius),
cv::Point(p3.x, p3.y - corner_radius), line_color, thickness,
line_type);
cv::line(src, cv::Point(p4.x + corner_radius, p4.y),
cv::Point(p3.x - corner_radius, p3.y), line_color, thickness,
line_type);
cv::line(src, cv::Point(p1.x, p1.y + corner_radius),
cv::Point(p4.x, p4.y - corner_radius), line_color, thickness,
line_type);
// Draw arcs at corners.
cv::ellipse(src, p1 + cv::Point(corner_radius, corner_radius),
cv::Size(corner_radius, corner_radius), 180.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p2 + cv::Point(-corner_radius, corner_radius),
cv::Size(corner_radius, corner_radius), 270.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p3 + cv::Point(-corner_radius, -corner_radius),
cv::Size(corner_radius, corner_radius), 0.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p4 + cv::Point(corner_radius, -corner_radius),
cv::Size(corner_radius, corner_radius), 90.0, 0, 90, line_color,
thickness, line_type);
}
void AnnotationRenderer::DrawOval(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& enclosing_rectangle = annotation.oval().rectangle();
if (enclosing_rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(enclosing_rectangle.left(),
enclosing_rectangle.top(), image_width_,
image_height_, &left, &top));
CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.right(), enclosing_rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(enclosing_rectangle.left() * scale_factor_);
top = static_cast<int>(enclosing_rectangle.top() * scale_factor_);
right = static_cast<int>(enclosing_rectangle.right() * scale_factor_);
bottom = static_cast<int>(enclosing_rectangle.bottom() * scale_factor_);
}
cv::Point center((left + right) / 2, (top + bottom) / 2);
cv::Size size((right - left) / 2, (bottom - top) / 2);
const double rotation = enclosing_rectangle.rotation() / M_PI * 180.f;
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::ellipse(mat_image_, center, size, rotation, 0, 360, color, thickness);
}
void AnnotationRenderer::DrawFilledOval(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& enclosing_rectangle = annotation.filled_oval().oval().rectangle();
if (enclosing_rectangle.normalized()) {
CHECK(NormalizedtoPixelCoordinates(enclosing_rectangle.left(),
enclosing_rectangle.top(), image_width_,
image_height_, &left, &top));
CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.right(), enclosing_rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(enclosing_rectangle.left() * scale_factor_);
top = static_cast<int>(enclosing_rectangle.top() * scale_factor_);
right = static_cast<int>(enclosing_rectangle.right() * scale_factor_);
bottom = static_cast<int>(enclosing_rectangle.bottom() * scale_factor_);
}
cv::Point center((left + right) / 2, (top + bottom) / 2);
cv::Size size(std::max(0, (right - left) / 2),
std::max(0, (bottom - top) / 2));
const double rotation = enclosing_rectangle.rotation() / M_PI * 180.f;
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
cv::ellipse(mat_image_, center, size, rotation, 0, 360, color, -1);
}
void AnnotationRenderer::DrawArrow(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& arrow = annotation.arrow();
if (arrow.normalized()) {
CHECK(NormalizedtoPixelCoordinates(arrow.x_start(), arrow.y_start(),
image_width_, image_height_, &x_start,
&y_start));
CHECK(NormalizedtoPixelCoordinates(arrow.x_end(), arrow.y_end(),
image_width_, image_height_, &x_end,
&y_end));
} else {
x_start = static_cast<int>(arrow.x_start() * scale_factor_);
y_start = static_cast<int>(arrow.y_start() * scale_factor_);
x_end = static_cast<int>(arrow.x_end() * scale_factor_);
y_end = static_cast<int>(arrow.y_end() * scale_factor_);
}
cv::Point arrow_start(x_start, y_start);
cv::Point arrow_end(x_end, y_end);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
// Draw the main arrow line.
cv::line(mat_image_, arrow_start, arrow_end, color, thickness);
// Compute the arrowtip left and right vectors.
Vector2_d L_start(static_cast<double>(x_start), static_cast<double>(y_start));
Vector2_d L_end(static_cast<double>(x_end), static_cast<double>(y_end));
Vector2_d U = (L_end - L_start).Normalize();
Vector2_d V = U.Ortho();
double line_length = (L_end - L_start).Norm();
constexpr double kArrowTipLengthProportion = 0.2;
double arrowtip_length = kArrowTipLengthProportion * line_length;
Vector2_d arrowtip_left = L_end - arrowtip_length * U + arrowtip_length * V;
Vector2_d arrowtip_right = L_end - arrowtip_length * U - arrowtip_length * V;
// Draw the arrowtip left and right lines.
cv::Point arrowtip_left_start(static_cast<int>(round(arrowtip_left[0])),
static_cast<int>(round(arrowtip_left[1])));
cv::Point arrowtip_right_start(static_cast<int>(round(arrowtip_right[0])),
static_cast<int>(round(arrowtip_right[1])));
cv::line(mat_image_, arrowtip_left_start, arrow_end, color, thickness);
cv::line(mat_image_, arrowtip_right_start, arrow_end, color, thickness);
}
void AnnotationRenderer::DrawPoint(const RenderAnnotation& annotation) {
const auto& point = annotation.point();
int x = -1;
int y = -1;
if (point.normalized()) {
CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
} else {
x = static_cast<int>(point.x() * scale_factor_);
y = static_cast<int>(point.y() * scale_factor_);
}
cv::Point point_to_draw(x, y);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::circle(mat_image_, point_to_draw, thickness, color, -1);
}
void AnnotationRenderer::DrawLine(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& line = annotation.line();
if (line.normalized()) {
CHECK(NormalizedtoPixelCoordinates(line.x_start(), line.y_start(),
image_width_, image_height_, &x_start,
&y_start));
CHECK(NormalizedtoPixelCoordinates(line.x_end(), line.y_end(), image_width_,
image_height_, &x_end, &y_end));
} else {
x_start = static_cast<int>(line.x_start() * scale_factor_);
y_start = static_cast<int>(line.y_start() * scale_factor_);
x_end = static_cast<int>(line.x_end() * scale_factor_);
y_end = static_cast<int>(line.y_end() * scale_factor_);
}
cv::Point start(x_start, y_start);
cv::Point end(x_end, y_end);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::line(mat_image_, start, end, color, thickness);
}
void AnnotationRenderer::DrawGradientLine(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& line = annotation.gradient_line();
if (line.normalized()) {
CHECK(NormalizedtoPixelCoordinates(line.x_start(), line.y_start(),
image_width_, image_height_, &x_start,
&y_start));
CHECK(NormalizedtoPixelCoordinates(line.x_end(), line.y_end(), image_width_,
image_height_, &x_end, &y_end));
} else {
x_start = static_cast<int>(line.x_start() * scale_factor_);
y_start = static_cast<int>(line.y_start() * scale_factor_);
x_end = static_cast<int>(line.x_end() * scale_factor_);
y_end = static_cast<int>(line.y_end() * scale_factor_);
}
const cv::Point start(x_start, y_start);
const cv::Point end(x_end, y_end);
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const cv::Scalar color1 = MediapipeColorToOpenCVColor(line.color1());
const cv::Scalar color2 = MediapipeColorToOpenCVColor(line.color2());
cv_line2(mat_image_, start, end, color1, color2, thickness);
}
void AnnotationRenderer::DrawText(const RenderAnnotation& annotation) {
int left = -1;
int baseline = -1;
int font_size = -1;
const auto& text = annotation.text();
if (text.normalized()) {
CHECK(NormalizedtoPixelCoordinates(text.left(), text.baseline(),
image_width_, image_height_, &left,
&baseline));
font_size = static_cast<int>(round(text.font_height() * image_height_));
} else {
left = static_cast<int>(text.left() * scale_factor_);
baseline = static_cast<int>(text.baseline() * scale_factor_);
font_size = static_cast<int>(text.font_height() * scale_factor_);
}
cv::Point origin(left, baseline);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const int font_face = text.font_face();
const double font_scale = ComputeFontScale(font_face, font_size, thickness);
int text_baseline = 0;
cv::Size text_size = cv::getTextSize(text.display_text(), font_face,
font_scale, thickness, &text_baseline);
if (text.center_horizontally()) {
origin.x -= text_size.width / 2;
}
if (text.center_vertically()) {
origin.y += text_size.height / 2;
}
cv::putText(mat_image_, text.display_text(), origin, font_face, font_scale,
color, thickness, /*lineType=*/8,
/*bottomLeftOrigin=*/flip_text_vertically_);
}
double AnnotationRenderer::ComputeFontScale(int font_face, int font_size,
int thickness) {
double base_line;
double cap_line;
// The details below of how to compute the font scale from font face,
// thickness, and size were inferred from the OpenCV implementation.
switch (font_face) {
case cv::FONT_HERSHEY_SIMPLEX:
case cv::FONT_HERSHEY_DUPLEX:
case cv::FONT_HERSHEY_COMPLEX:
case cv::FONT_HERSHEY_TRIPLEX:
case cv::FONT_HERSHEY_SCRIPT_SIMPLEX:
case cv::FONT_HERSHEY_SCRIPT_COMPLEX:
base_line = 9;
cap_line = 12;
break;
case cv::FONT_HERSHEY_PLAIN:
base_line = 5;
cap_line = 4;
break;
case cv::FONT_HERSHEY_COMPLEX_SMALL:
base_line = 6;
cap_line = 7;
break;
default:
return -1;
}
const double thick = static_cast<double>(thickness + 1);
return (static_cast<double>(font_size) - (thick / 2.0F)) /
(cap_line + base_line);
}
} // namespace mediapipe

View File

@ -1,158 +0,0 @@
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_UTIL_ANNOTATION_RENDERER_H_
#define MEDIAPIPE_UTIL_ANNOTATION_RENDERER_H_
#include <string>
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/port/opencv_highgui_inc.h"
#include "mediapipe/util/render_data.pb.h"
namespace mediapipe {
// The renderer library for rendering data on images.
//
// Example usage:
//
// AnnotationRenderer renderer;
//
// std::unique_ptr<cv::Mat> mat_image(new cv::Mat(kImageHeight, kImageWidth,
// CV_8UC3));
//
// renderer.AdoptImage(mat_image.get());
//
// RenderData render_data_0;
// <FILL RENDER_DATA_0 WITH ANNOTATIONS>
//
// renderer.RenderDataOnImage(render_data_0);
//
// RenderData render_data_1;
// <FILL RENDER_DATA_1 WITH ANNOTATIONS>
//
// renderer.RenderDataOnImage(render_data_1);
//
// UseRenderedImage(mat_image.get());
class AnnotationRenderer {
public:
explicit AnnotationRenderer() {}
explicit AnnotationRenderer(const cv::Mat& mat_image)
: image_width_(mat_image.cols),
image_height_(mat_image.rows),
mat_image_(mat_image.clone()) {}
// Renders the image with the input render data.
void RenderDataOnImage(const RenderData& render_data);
// Resets the renderer with a new image. Does not own input_image. input_image
// must not be modified by caller during rendering.
void AdoptImage(cv::Mat* input_image);
// Gets image dimensions.
int GetImageWidth() const;
int GetImageHeight() const;
// Sets whether text should be rendered upside down. This is default to false
// and text is rendered assuming the underlying image has its origin at the
// top-left corner. Set it to true if the image origin is at the bottom-left
// corner.
void SetFlipTextVertically(bool flip);
// For GPU rendering optimization in AnnotationOverlayCalculator.
// Scale all incoming coordinates,sizes,thickness,etc. by this amount.
// Should be in the range (0-1].
// See 'gpu_scale_factor' in annotation_overlay_calculator.proto
void SetScaleFactor(float scale_factor);
float GetScaleFactor() { return scale_factor_; }
private:
// Draws a rectangle on the image as described in the annotation.
void DrawRectangle(const RenderAnnotation& annotation);
// Draws a filled rectangle on the image as described in the annotation.
void DrawFilledRectangle(const RenderAnnotation& annotation);
// Draws an oval on the image as described in the annotation.
void DrawOval(const RenderAnnotation& annotation);
// Draws a filled oval on the image as described in the annotation.
void DrawFilledOval(const RenderAnnotation& annotation);
// Draws an arrow on the image as described in the annotation.
void DrawArrow(const RenderAnnotation& annotation);
// Draws a point on the image as described in the annotation.
void DrawPoint(const RenderAnnotation& annotation);
// Draws lipstick on the face.
void DrawLipstick(const RenderData& render_data);
// Whitens teeth.
void WhitenTeeth(const RenderData& render_data);
// Draws a line segment on the image as described in the annotation.
void DrawLine(const RenderAnnotation& annotation);
// Draws a 2-tone line segment on the image as described in the annotation.
void DrawGradientLine(const RenderAnnotation& annotation);
// Draws a text on the image as described in the annotation.
void DrawText(const RenderAnnotation& annotation);
// Draws a rounded rectangle on the image as described in the annotation.
void DrawRoundedRectangle(const RenderAnnotation& annotation);
// Draws a filled rounded rectangle on the image as described in the
// annotation.
void DrawFilledRoundedRectangle(const RenderAnnotation& annotation);
// Helper function for drawing a rectangle with rounded corners. The
// parameters are the same as in the OpenCV function rectangle().
// corner_radius: A positive int value defining the radius of the round
// corners.
void DrawRoundedRectangle(cv::Mat src, cv::Point top_left,
cv::Point bottom_right,
const cv::Scalar& line_color, int thickness = 1,
int line_type = 8, int corner_radius = 0);
// Computes the font scale from font_face, size and thickness.
double ComputeFontScale(int font_face, int font_size, int thickness);
cv::Mat FormFacePartMask(std::vector<int> orderList, const RenderData &render_data);
cv::Mat predict_forehead_mask(const RenderData &render_data, double face_box_min_y);
void smooth_face(const RenderData &render_data);
std::tuple<double, double, double, double> GetFaceBox(const RenderData &render_data);
// Width and Height of the image (in pixels).
int image_width_ = -1;
int image_height_ = -1;
// The image for rendering.
cv::Mat mat_image_;
// See SetFlipTextVertically(bool).
bool flip_text_vertically_ = false;
// See SetScaleFactor(float)
float scale_factor_ = 1.0;
};
} // namespace mediapipe
#endif // MEDIAPIPE_UTIL_ANNOTATION_RENDERER_H_

View File

@ -1,70 +0,0 @@
# MediaPipe graph that performs face mesh on desktop with TensorFlow Lite
# on CPU.
# Path to the input video file. (string)
input_side_packet: "input_video_path"
# Path to the output video file. (string)
input_side_packet: "output_video_path"
# max_queue_size limits the number of packets enqueued on any input stream
# by throttling inputs to the graph. This makes the graph only process one
# frame per time.
max_queue_size: 1
# Decodes an input video file into images and a video header.
node {
calculator: "OpenCvVideoDecoderCalculator"
input_side_packet: "INPUT_FILE_PATH:input_video_path"
output_stream: "VIDEO:input_video"
output_stream: "VIDEO_PRESTREAM:input_video_header"
}
# Defines side packets for further use in the graph.
node {
calculator: "ConstantSidePacketCalculator"
output_side_packet: "PACKET:0:num_faces"
output_side_packet: "PACKET:1:with_attention"
node_options: {
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: {
packet { int_value: 1 }
packet { bool_value: true }
}
}
}
# Subgraph that detects faces and corresponding landmarks.
node {
calculator: "FaceLandmarkFrontCpu"
input_stream: "IMAGE:input_video"
input_side_packet: "NUM_FACES:num_faces"
input_side_packet: "WITH_ATTENTION:with_attention"
output_stream: "LANDMARKS:multi_face_landmarks"
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
output_stream: "DETECTIONS:face_detections"
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
}
# Subgraph that renders face-landmark annotation onto the input video.
node {
calculator: "FaceRendererCpu"
input_stream: "IMAGE:input_video"
input_stream: "LANDMARKS:multi_face_landmarks"
input_stream: "NORM_RECTS:face_rects_from_landmarks"
input_stream: "DETECTIONS:face_detections"
output_stream: "IMAGE:output_video"
}
# Encodes the annotated images into a video file, adopting properties specified
# in the input video header, e.g., video framerate.
node {
calculator: "OpenCvVideoEncoderCalculator"
input_stream: "VIDEO:output_video"
input_stream: "VIDEO_PRESTREAM:input_video_header"
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
node_options: {
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
codec: "avc1"
video_format: "mp4"
}
}
}

View File

@ -33,24 +33,7 @@ cc_library(
"//mediapipe/calculators/util:detections_to_render_data_calculator",
"//mediapipe/calculators/util:landmarks_to_render_data_calculator",
"//mediapipe/calculators/landmarks:landmarks_to_mask_calculator",
],
)
mediapipe_simple_subgraph(
name = "face_renderer_gpu",
graph = "face_renderer_gpu.pbtxt",
register_as = "FaceRendererGpu",
deps = [
":renderer_calculators",
],
)
mediapipe_simple_subgraph(
name = "face_renderer_gpu_over",
graph = "face_renderer_gpu_over.pbtxt",
register_as = "FaceRendererGpuOver",
deps = [
":renderer_calculators",
"//mediapipe/graphs/face_mesh/calculators:face_landmarks_to_render_data_calculator",
],
)
@ -62,3 +45,12 @@ mediapipe_simple_subgraph(
":renderer_calculators",
],
)
mediapipe_simple_subgraph(
name = "face_renderer_cpu_single",
graph = "face_renderer_cpu_single.pbtxt",
register_as = "FaceRendererCpuSingle",
deps = [
":renderer_calculators",
],
)

View File

@ -11,12 +11,6 @@ input_stream: "LANDMARKS:multi_face_landmarks"
# CPU image with rendered data. (ImageFrame)
output_stream: "IMAGE:output_image"
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:input_image"
output_stream: "SIZE:image_size"
}
# Outputs each element of multi_face_landmarks at a fake timestamp for the rest
# of the graph to process. At the end of the loop, outputs the BATCH_END
# timestamp for downstream calculators to inform them that all elements in the

View File

@ -0,0 +1,59 @@
# MediaPipe face mesh rendering subgraph.
type: "FaceRendererCpuSingle"
# CPU image. (ImageFrame)
input_stream: "IMAGE:input_image"
# Collection of detected/predicted faces, each represented as a list of
# landmarks. (std::vector<NormalizedLandmarkList>)
input_stream: "LANDMARKS:multi_face_landmarks"
# CPU image with rendered data. (ImageFrame)
output_stream: "IMAGE:output_image"
# Outputs each element of multi_face_landmarks at a fake timestamp for the rest
# of the graph to process. At the end of the loop, outputs the BATCH_END
# timestamp for downstream calculators to inform them that all elements in the
# vector have been processed.
node {
calculator: "BeginLoopNormalizedLandmarkListVectorCalculator"
input_stream: "ITERABLE:multi_face_landmarks"
output_stream: "ITEM:face_landmarks"
output_stream: "BATCH_END:landmark_timestamp"
}
# Converts landmarks to drawing primitives for annotation overlay.
node {
calculator: "FaceLandmarksToRenderDataCalculator"
input_stream: "NORM_LANDMARKS:face_landmarks"
output_stream: "RENDER_DATA:landmarks_render_data"
node_options: {
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
landmark_color { r: 255 g: 0 b: 0 }
connection_color { r: 0 g: 255 b: 0 }
thickness: 2
visualize_landmark_depth: false
}
}
}
# Collects a RenderData object for each hand into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of RenderData at the BATCH_END
# timestamp.
node {
calculator: "EndLoopRenderDataCalculator"
input_stream: "ITEM:landmarks_render_data"
input_stream: "BATCH_END:landmark_timestamp"
output_stream: "ITERABLE:multi_face_landmarks_render_data"
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:input_image"
input_stream: "VECTOR:0:multi_face_landmarks_render_data"
output_stream: "IMAGE:output_image"
}