Added hand landmarker Python API and tests

This commit is contained in:
kinaryml 2022-11-08 01:05:36 -08:00
parent 4a6562d423
commit 0402ee383f
4 changed files with 863 additions and 0 deletions

View File

@ -73,3 +73,26 @@ py_test(
"//mediapipe/tasks/python/vision/core:vision_task_running_mode", "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
], ],
) )
py_test(
name = "hand_landmarker_test",
srcs = ["hand_landmarker_test.py"],
data = [
"//mediapipe/tasks/testdata/vision:test_images",
"//mediapipe/tasks/testdata/vision:test_models",
"//mediapipe/tasks/testdata/vision:test_protos",
],
deps = [
"//mediapipe/python:_framework_bindings",
"//mediapipe/tasks/cc/components/containers/proto:landmarks_detection_result_py_pb2",
"//mediapipe/tasks/python/components/containers:rect",
"//mediapipe/tasks/python/components/containers:landmark",
"//mediapipe/tasks/python/components/containers:landmark_detection_result",
"//mediapipe/tasks/python/core:base_options",
"//mediapipe/tasks/python/test:test_utils",
"//mediapipe/tasks/python/vision:hand_landmarker",
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
"//mediapipe/tasks/python/vision/core:image_processing_options",
"@com_google_protobuf//:protobuf_python"
],
)

View File

@ -0,0 +1,436 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for hand landmarker."""
import enum
from unittest import mock
import numpy as np
from google.protobuf import text_format
from absl.testing import absltest
from absl.testing import parameterized
from mediapipe.python._framework_bindings import image as image_module
from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
from mediapipe.tasks.python.components.containers import rect as rect_module
from mediapipe.tasks.python.components.containers import landmark as landmark_module
from mediapipe.tasks.python.components.containers import landmark_detection_result as landmark_detection_result_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.test import test_utils
from mediapipe.tasks.python.vision import hand_landmarker
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
_BaseOptions = base_options_module.BaseOptions
_Rect = rect_module.Rect
_Landmark = landmark_module.Landmark
_NormalizedLandmark = landmark_module.NormalizedLandmark
_LandmarksDetectionResult = landmark_detection_result_module.LandmarksDetectionResult
_Image = image_module.Image
_HandLandmarker = hand_landmarker.HandLandmarker
_HandLandmarkerOptions = hand_landmarker.HandLandmarkerOptions
_HandLandmarksDetectionResult = hand_landmarker.HandLandmarksDetectionResult
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
_HAND_LANDMARKER_BUNDLE_ASSET_FILE = 'hand_landmarker.task'
_NO_HANDS_IMAGE = 'cats_and_dogs.jpg'
_TWO_HANDS_IMAGE = 'right_hands.jpg'
_THUMB_UP_IMAGE = 'thumb_up.jpg'
_THUMB_UP_LANDMARKS = 'thumb_up_landmarks.pbtxt'
_POINTING_UP_IMAGE = 'pointing_up.jpg'
_POINTING_UP_LANDMARKS = 'pointing_up_landmarks.pbtxt'
_POINTING_UP_ROTATED_IMAGE = 'pointing_up_rotated.jpg'
_POINTING_UP_ROTATED_LANDMARKS = 'pointing_up_rotated_landmarks.pbtxt'
_LANDMARKS_ERROR_TOLERANCE = 0.03
_HANDEDNESS_MARGIN = 0.05
def _get_expected_hand_landmarks_detection_result(
file_path: str) -> _HandLandmarksDetectionResult:
landmarks_detection_result_file_path = test_utils.get_test_data_path(
file_path)
with open(landmarks_detection_result_file_path, "rb") as f:
landmarks_detection_result_proto = _LandmarksDetectionResultProto()
# Use this if a .pb file is available.
# landmarks_detection_result_proto.ParseFromString(f.read())
text_format.Parse(f.read(), landmarks_detection_result_proto)
landmarks_detection_result = _LandmarksDetectionResult.create_from_pb2(
landmarks_detection_result_proto)
return _HandLandmarksDetectionResult(
handedness=[landmarks_detection_result.categories],
hand_landmarks=[landmarks_detection_result.landmarks],
hand_world_landmarks=[landmarks_detection_result.world_landmarks])
class ModelFileType(enum.Enum):
FILE_CONTENT = 1
FILE_NAME = 2
class GestureRecognizerTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.test_image = _Image.create_from_file(
test_utils.get_test_data_path(_THUMB_UP_IMAGE))
self.model_path = test_utils.get_test_data_path(
_HAND_LANDMARKER_BUNDLE_ASSET_FILE)
def _assert_actual_result_approximately_matches_expected_result(
self,
actual_result: _HandLandmarksDetectionResult,
expected_result: _HandLandmarksDetectionResult
):
# Expects to have the same number of hands detected.
self.assertLen(actual_result.hand_landmarks,
len(expected_result.hand_landmarks))
self.assertLen(actual_result.hand_world_landmarks,
len(expected_result.hand_world_landmarks))
self.assertLen(actual_result.handedness, len(expected_result.handedness))
# Actual landmarks match expected landmarks.
self.assertLen(actual_result.hand_landmarks[0],
len(expected_result.hand_landmarks[0]))
actual_landmarks = actual_result.hand_landmarks[0]
expected_landmarks = expected_result.hand_landmarks[0]
for i in range(len(actual_landmarks)):
self.assertAlmostEqual(actual_landmarks[i].x, expected_landmarks[i].x,
delta=_LANDMARKS_ERROR_TOLERANCE)
self.assertAlmostEqual(actual_landmarks[i].y, expected_landmarks[i].y,
delta=_LANDMARKS_ERROR_TOLERANCE)
# Actual handedness matches expected handedness.
actual_top_handedness = actual_result.handedness[0][0]
expected_top_handedness = expected_result.handedness[0][0]
self.assertEqual(actual_top_handedness.index, expected_top_handedness.index)
self.assertEqual(actual_top_handedness.category_name,
expected_top_handedness.category_name)
self.assertAlmostEqual(actual_top_handedness.score,
expected_top_handedness.score,
delta=_HANDEDNESS_MARGIN)
def test_create_from_file_succeeds_with_valid_model_path(self):
# Creates with default option and valid model file successfully.
with _HandLandmarker.create_from_model_path(self.model_path) as landmarker:
self.assertIsInstance(landmarker, _HandLandmarker)
def test_create_from_options_succeeds_with_valid_model_path(self):
# Creates with options containing model file successfully.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _HandLandmarkerOptions(base_options=base_options)
with _HandLandmarker.create_from_options(options) as landmarker:
self.assertIsInstance(landmarker, _HandLandmarker)
def test_create_from_options_fails_with_invalid_model_path(self):
# Invalid empty model path.
with self.assertRaisesRegex(
ValueError,
r"ExternalFile must specify at least one of 'file_content', "
r"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."):
base_options = _BaseOptions(model_asset_path='')
options = _HandLandmarkerOptions(base_options=base_options)
_HandLandmarker.create_from_options(options)
def test_create_from_options_succeeds_with_valid_model_content(self):
# Creates with options containing model content successfully.
with open(self.model_path, 'rb') as f:
base_options = _BaseOptions(model_asset_buffer=f.read())
options = _HandLandmarkerOptions(base_options=base_options)
landmarker = _HandLandmarker.create_from_options(options)
self.assertIsInstance(landmarker, _HandLandmarker)
@parameterized.parameters(
(ModelFileType.FILE_NAME, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS
)),
(ModelFileType.FILE_CONTENT, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS
)))
def test_detect(self, model_file_type, expected_detection_result):
# Creates hand landmarker.
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=self.model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(self.model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _HandLandmarkerOptions(base_options=base_options)
landmarker = _HandLandmarker.create_from_options(options)
# Performs hand landmarks detection on the input.
detection_result = landmarker.detect(self.test_image)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
detection_result, expected_detection_result)
# Closes the hand landmarker explicitly when the hand landmarker is not used
# in a context.
landmarker.close()
@parameterized.parameters(
(ModelFileType.FILE_NAME, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS
)),
(ModelFileType.FILE_CONTENT, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS
)))
def test_detect_in_context(self, model_file_type, expected_detection_result):
# Creates hand landmarker.
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=self.model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(self.model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _HandLandmarkerOptions(base_options=base_options)
with _HandLandmarker.create_from_options(options) as landmarker:
# Performs hand landmarks detection on the input.
detection_result = landmarker.detect(self.test_image)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
detection_result, expected_detection_result)
def test_detect_succeeds_with_num_hands(self):
# Creates hand landmarker.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _HandLandmarkerOptions(base_options=base_options, num_hands=2)
with _HandLandmarker.create_from_options(options) as landmarker:
# Load the two hands image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_TWO_HANDS_IMAGE))
# Performs hand landmarks detection on the input.
detection_result = landmarker.detect(test_image)
# Comparing results.
self.assertLen(detection_result.handedness, 2)
def test_detect_succeeds_with_rotation(self):
# Creates hand landmarker.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _HandLandmarkerOptions(base_options=base_options)
with _HandLandmarker.create_from_options(options) as landmarker:
# Load the pointing up rotated image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_ROTATED_IMAGE))
# Set rotation parameters using ImageProcessingOptions.
image_processing_options = _ImageProcessingOptions(rotation_degrees=-90)
# Performs hand landmarks detection on the input.
detection_result = landmarker.detect(test_image,
image_processing_options)
expected_detection_result = _get_expected_hand_landmarks_detection_result(
_POINTING_UP_ROTATED_LANDMARKS)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
detection_result, expected_detection_result)
def test_detect_fails_with_region_of_interest(self):
# Creates hand landmarker.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _HandLandmarkerOptions(base_options=base_options)
with self.assertRaisesRegex(
ValueError, "This task doesn't support region-of-interest."):
with _HandLandmarker.create_from_options(options) as landmarker:
# Set the `region_of_interest` parameter using `ImageProcessingOptions`.
image_processing_options = _ImageProcessingOptions(
region_of_interest=_Rect(0, 0, 1, 1))
# Attempt to perform hand landmarks detection on the cropped input.
landmarker.detect(self.test_image, image_processing_options)
def test_empty_detection_outputs(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path))
with _HandLandmarker.create_from_options(options) as landmarker:
# Load the image with no hands.
no_hands_test_image = _Image.create_from_file(
test_utils.get_test_data_path(_NO_HANDS_IMAGE))
# Performs hand landmarks detection on the input.
detection_result = landmarker.detect(no_hands_test_image)
self.assertEmpty(detection_result.hand_landmarks)
self.assertEmpty(detection_result.hand_world_landmarks)
self.assertEmpty(detection_result.handedness)
def test_missing_result_callback(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM)
with self.assertRaisesRegex(ValueError,
r'result callback must be provided'):
with _HandLandmarker.create_from_options(options) as unused_landmarker:
pass
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
def test_illegal_result_callback(self, running_mode):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=running_mode,
result_callback=mock.MagicMock())
with self.assertRaisesRegex(ValueError,
r'result callback should not be provided'):
with _HandLandmarker.create_from_options(options) as unused_landmarker:
pass
def test_calling_detect_for_video_in_image_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.IMAGE)
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the video mode'):
landmarker.detect_for_video(self.test_image, 0)
def test_calling_detect_async_in_image_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.IMAGE)
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the live stream mode'):
landmarker.detect_async(self.test_image, 0)
def test_calling_detect_in_video_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the image mode'):
landmarker.detect(self.test_image)
def test_calling_detect_async_in_video_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the live stream mode'):
landmarker.detect_async(self.test_image, 0)
def test_detect_for_video_with_out_of_order_timestamp(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _HandLandmarker.create_from_options(options) as landmarker:
unused_result = landmarker.detect_for_video(self.test_image, 1)
with self.assertRaisesRegex(
ValueError, r'Input timestamp must be monotonically increasing'):
landmarker.detect_for_video(self.test_image, 0)
@parameterized.parameters(
(_THUMB_UP_IMAGE, 0, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS)),
(_POINTING_UP_IMAGE, 0, _get_expected_hand_landmarks_detection_result(
_POINTING_UP_LANDMARKS)),
(_POINTING_UP_ROTATED_IMAGE, -90,
_get_expected_hand_landmarks_detection_result(
_POINTING_UP_ROTATED_LANDMARKS)),
(_NO_HANDS_IMAGE, 0, _HandLandmarksDetectionResult([], [], [])))
def test_detect_for_video(self, image_path, rotation, expected_result):
test_image = _Image.create_from_file(
test_utils.get_test_data_path(image_path))
# Set rotation parameters using ImageProcessingOptions.
image_processing_options = _ImageProcessingOptions(rotation_degrees=rotation)
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _HandLandmarker.create_from_options(options) as landmarker:
for timestamp in range(0, 300, 30):
result = landmarker.detect_for_video(test_image,
timestamp,
image_processing_options)
if result.hand_landmarks and result.hand_world_landmarks and \
result.handedness:
self._assert_actual_result_approximately_matches_expected_result(
result, expected_result)
else:
self.assertEqual(result, expected_result)
def test_calling_detect_in_live_stream_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the image mode'):
landmarker.detect(self.test_image)
def test_calling_detect_for_video_in_live_stream_mode(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _HandLandmarker.create_from_options(options) as landmarker:
with self.assertRaisesRegex(ValueError,
r'not initialized with the video mode'):
landmarker.detect_for_video(self.test_image, 0)
def test_detect_async_calls_with_illegal_timestamp(self):
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _HandLandmarker.create_from_options(options) as landmarker:
landmarker.detect_async(self.test_image, 100)
with self.assertRaisesRegex(
ValueError, r'Input timestamp must be monotonically increasing'):
landmarker.detect_async(self.test_image, 0)
@parameterized.parameters(
(_THUMB_UP_IMAGE, 0, _get_expected_hand_landmarks_detection_result(
_THUMB_UP_LANDMARKS)),
(_POINTING_UP_IMAGE, 0, _get_expected_hand_landmarks_detection_result(
_POINTING_UP_LANDMARKS)),
(_POINTING_UP_ROTATED_IMAGE, -90,
_get_expected_hand_landmarks_detection_result(
_POINTING_UP_ROTATED_LANDMARKS)),
(_NO_HANDS_IMAGE, 0, _HandLandmarksDetectionResult([], [], [])))
def test_detect_async_calls(self, image_path, rotation, expected_result):
test_image = _Image.create_from_file(
test_utils.get_test_data_path(image_path))
# Set rotation parameters using ImageProcessingOptions.
image_processing_options = _ImageProcessingOptions(rotation_degrees=rotation)
observed_timestamp_ms = -1
def check_result(result: _HandLandmarksDetectionResult,
output_image: _Image,
timestamp_ms: int):
if result.hand_landmarks and result.hand_world_landmarks and \
result.handedness:
self._assert_actual_result_approximately_matches_expected_result(
result, expected_result)
else:
self.assertEqual(result, expected_result)
self.assertTrue(
np.array_equal(output_image.numpy_view(),
test_image.numpy_view()))
self.assertLess(observed_timestamp_ms, timestamp_ms)
self.observed_timestamp_ms = timestamp_ms
options = _HandLandmarkerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=check_result)
with _HandLandmarker.create_from_options(options) as landmarker:
for timestamp in range(0, 300, 30):
landmarker.detect_async(test_image, timestamp, image_processing_options)
if __name__ == '__main__':
absltest.main()

View File

@ -102,3 +102,26 @@ py_library(
"//mediapipe/tasks/python/vision/core:vision_task_running_mode", "//mediapipe/tasks/python/vision/core:vision_task_running_mode",
], ],
) )
py_library(
name = "hand_landmarker",
srcs = [
"hand_landmarker.py",
],
deps = [
"//mediapipe/framework/formats:classification_py_pb2",
"//mediapipe/framework/formats:landmark_py_pb2",
"//mediapipe/python:_framework_bindings",
"//mediapipe/python:packet_creator",
"//mediapipe/python:packet_getter",
"//mediapipe/tasks/cc/vision/hand_landmarker/proto:hand_landmarker_graph_options_py_pb2",
"//mediapipe/tasks/python/components/containers:category",
"//mediapipe/tasks/python/components/containers:landmark",
"//mediapipe/tasks/python/core:base_options",
"//mediapipe/tasks/python/core:optional_dependencies",
"//mediapipe/tasks/python/core:task_info",
"//mediapipe/tasks/python/vision/core:base_vision_task_api",
"//mediapipe/tasks/python/vision/core:image_processing_options",
"//mediapipe/tasks/python/vision/core:vision_task_running_mode",
],
)

View File

@ -0,0 +1,381 @@
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe hand landmarker task."""
import dataclasses
from typing import Callable, Mapping, Optional, List
from mediapipe.framework.formats import classification_pb2
from mediapipe.framework.formats import landmark_pb2
from mediapipe.python import packet_creator
from mediapipe.python import packet_getter
from mediapipe.python._framework_bindings import image as image_module
from mediapipe.python._framework_bindings import packet as packet_module
from mediapipe.tasks.cc.vision.hand_landmarker.proto import hand_landmarker_graph_options_pb2
from mediapipe.tasks.python.components.containers import category as category_module
from mediapipe.tasks.python.components.containers import landmark as landmark_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.core import task_info as task_info_module
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
from mediapipe.tasks.python.vision.core import base_vision_task_api
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
_BaseOptions = base_options_module.BaseOptions
_HandLandmarkerGraphOptionsProto = hand_landmarker_graph_options_pb2.HandLandmarkerGraphOptions
_RunningMode = running_mode_module.VisionTaskRunningMode
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
_TaskInfo = task_info_module.TaskInfo
_IMAGE_IN_STREAM_NAME = 'image_in'
_IMAGE_OUT_STREAM_NAME = 'image_out'
_IMAGE_TAG = 'IMAGE'
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
_NORM_RECT_TAG = 'NORM_RECT'
_HANDEDNESS_STREAM_NAME = 'handedness'
_HANDEDNESS_TAG = 'HANDEDNESS'
_HAND_LANDMARKS_STREAM_NAME = 'landmarks'
_HAND_LANDMARKS_TAG = 'LANDMARKS'
_HAND_WORLD_LANDMARKS_STREAM_NAME = 'world_landmarks'
_HAND_WORLD_LANDMARKS_TAG = 'WORLD_LANDMARKS'
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.hand_landmarker.HandLandmarkerGraph'
_MICRO_SECONDS_PER_MILLISECOND = 1000
@dataclasses.dataclass
class HandLandmarksDetectionResult:
"""The hand landmarks detection result from HandLandmarker, where each vector
element represents a single hand detected in the image.
Attributes:
handedness: Classification of handedness.
hand_landmarks: Detected hand landmarks in normalized image coordinates.
hand_world_landmarks: Detected hand landmarks in world coordinates.
"""
handedness: List[List[category_module.Category]]
hand_landmarks: List[List[landmark_module.NormalizedLandmark]]
hand_world_landmarks: List[List[landmark_module.Landmark]]
def _build_detection_result(
output_packets: Mapping[str,packet_module.Packet]
) -> HandLandmarksDetectionResult:
"""Constructs a `HandLandmarksDetectionResult` from output packets."""
handedness_proto_list = packet_getter.get_proto_list(
output_packets[_HANDEDNESS_STREAM_NAME])
hand_landmarks_proto_list = packet_getter.get_proto_list(
output_packets[_HAND_LANDMARKS_STREAM_NAME])
hand_world_landmarks_proto_list = packet_getter.get_proto_list(
output_packets[_HAND_WORLD_LANDMARKS_STREAM_NAME])
handedness_results = []
for proto in handedness_proto_list:
handedness_categories = []
handedness_classifications = classification_pb2.ClassificationList()
handedness_classifications.MergeFrom(proto)
for handedness in handedness_classifications.classification:
handedness_categories.append(
category_module.Category(
index=handedness.index,
score=handedness.score,
display_name=handedness.display_name,
category_name=handedness.label))
handedness_results.append(handedness_categories)
hand_landmarks_results = []
for proto in hand_landmarks_proto_list:
hand_landmarks = landmark_pb2.NormalizedLandmarkList()
hand_landmarks.MergeFrom(proto)
hand_landmarks_results.append([
landmark_module.NormalizedLandmark.create_from_pb2(hand_landmark)
for hand_landmark in hand_landmarks.landmark
])
hand_world_landmarks_results = []
for proto in hand_world_landmarks_proto_list:
hand_world_landmarks = landmark_pb2.LandmarkList()
hand_world_landmarks.MergeFrom(proto)
hand_world_landmarks_results.append([
landmark_module.Landmark.create_from_pb2(hand_world_landmark)
for hand_world_landmark in hand_world_landmarks.landmark
])
return HandLandmarksDetectionResult(handedness_results,
hand_landmarks_results,
hand_world_landmarks_results)
@dataclasses.dataclass
class HandLandmarkerOptions:
"""Options for the hand landmarker task.
Attributes:
base_options: Base options for the hand landmarker task.
running_mode: The running mode of the task. Default to the image mode.
HandLandmarker has three running modes: 1) The image mode for detecting
hand landmarks on single image inputs. 2) The video mode for detecting
hand landmarks on the decoded frames of a video. 3) The live stream mode
for detecting hand landmarks on the live stream of input data, such as
from camera. In this mode, the "result_callback" below must be specified
to receive the detection results asynchronously.
num_hands: The maximum number of hands can be detected by the hand
landmarker.
min_hand_detection_confidence: The minimum confidence score for the hand
detection to be considered successful.
min_hand_presence_confidence: The minimum confidence score of hand presence
score in the hand landmark detection.
min_tracking_confidence: The minimum confidence score for the hand tracking
to be considered successful.
result_callback: The user-defined result callback for processing live stream
data. The result callback should only be specified when the running mode
is set to the live stream mode.
"""
base_options: _BaseOptions
running_mode: _RunningMode = _RunningMode.IMAGE
num_hands: Optional[int] = 1
min_hand_detection_confidence: Optional[float] = 0.5
min_hand_presence_confidence: Optional[float] = 0.5
min_tracking_confidence: Optional[float] = 0.5
result_callback: Optional[Callable[
[HandLandmarksDetectionResult, image_module.Image, int], None]] = None
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _HandLandmarkerGraphOptionsProto:
"""Generates an HandLandmarkerGraphOptions protobuf object."""
base_options_proto = self.base_options.to_pb2()
base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True
# Initialize the hand landmarker options from base options.
hand_landmarker_options_proto = _HandLandmarkerGraphOptionsProto(
base_options=base_options_proto)
hand_landmarker_options_proto.min_tracking_confidence = self.min_tracking_confidence
hand_landmarker_options_proto.hand_detector_graph_options.num_hands = self.num_hands
hand_landmarker_options_proto.hand_detector_graph_options.min_detection_confidence = self.min_hand_detection_confidence
hand_landmarker_options_proto.hand_landmarks_detector_graph_options.min_detection_confidence = self.min_hand_presence_confidence
return hand_landmarker_options_proto
class HandLandmarker(base_vision_task_api.BaseVisionTaskApi):
"""Class that performs hand landmarks detection on images."""
@classmethod
def create_from_model_path(cls, model_path: str) -> 'HandLandmarker':
"""Creates an `HandLandmarker` object from a TensorFlow Lite model and the default `HandLandmarkerOptions`.
Note that the created `HandLandmarker` instance is in image mode, for
detecting hand landmarks on single image inputs.
Args:
model_path: Path to the model.
Returns:
`HandLandmarker` object that's created from the model file and the
default `HandLandmarkerOptions`.
Raises:
ValueError: If failed to create `HandLandmarker` object from the
provided file such as invalid file path.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(model_asset_path=model_path)
options = HandLandmarkerOptions(
base_options=base_options, running_mode=_RunningMode.IMAGE)
return cls.create_from_options(options)
@classmethod
def create_from_options(
cls, options: HandLandmarkerOptions) -> 'HandLandmarker':
"""Creates the `HandLandmarker` object from hand landmarker options.
Args:
options: Options for the hand landmarker task.
Returns:
`HandLandmarker` object that's created from `options`.
Raises:
ValueError: If failed to create `HandLandmarker` object from
`HandLandmarkerOptions` such as missing the model.
RuntimeError: If other types of error occurred.
"""
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
return
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
if output_packets[_HAND_LANDMARKS_STREAM_NAME].is_empty():
empty_packet = output_packets[_HAND_LANDMARKS_STREAM_NAME]
options.result_callback(
HandLandmarksDetectionResult([], [], []), image,
empty_packet.timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
return
hand_landmarks_detection_result = _build_detection_result(output_packets)
timestamp = output_packets[_HAND_LANDMARKS_STREAM_NAME].timestamp
options.result_callback(hand_landmarks_detection_result, image,
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND)
task_info = _TaskInfo(
task_graph=_TASK_GRAPH_NAME,
input_streams=[
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
],
output_streams=[
':'.join([_HANDEDNESS_TAG, _HANDEDNESS_STREAM_NAME]),
':'.join([_HAND_LANDMARKS_TAG,
_HAND_LANDMARKS_STREAM_NAME]), ':'.join([
_HAND_WORLD_LANDMARKS_TAG,
_HAND_WORLD_LANDMARKS_STREAM_NAME
]), ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME])
],
task_options=options)
return cls(
task_info.generate_graph_config(
enable_flow_limiting=options.running_mode ==
_RunningMode.LIVE_STREAM), options.running_mode,
packets_callback if options.result_callback else None)
def detect(
self,
image: image_module.Image,
image_processing_options: Optional[_ImageProcessingOptions] = None
) -> HandLandmarksDetectionResult:
"""Performs hand landmarks detection on the given image.
Only use this method when the HandLandmarker is created with the image
running mode.
The image can be of any size with format RGB or RGBA.
TODO: Describes how the input image will be preprocessed after the yuv
support is implemented.
Args:
image: MediaPipe Image.
image_processing_options: Options for image processing.
Returns:
The hand landmarks detection results.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If hand landmarker detection failed to run.
"""
normalized_rect = self.convert_to_normalized_rect(
image_processing_options, roi_allowed=False)
output_packets = self._process_image_data({
_IMAGE_IN_STREAM_NAME:
packet_creator.create_image(image),
_NORM_RECT_STREAM_NAME:
packet_creator.create_proto(normalized_rect.to_pb2())
})
if output_packets[_HAND_LANDMARKS_STREAM_NAME].is_empty():
return HandLandmarksDetectionResult([], [], [])
return _build_detection_result(output_packets)
def detect_for_video(
self,
image: image_module.Image,
timestamp_ms: int,
image_processing_options: Optional[_ImageProcessingOptions] = None
) -> HandLandmarksDetectionResult:
"""Performs hand landmarks detection on the provided video frame.
Only use this method when the HandLandmarker is created with the video
running mode.
Only use this method when the HandLandmarker is created with the video
running mode. It's required to provide the video frame's timestamp (in
milliseconds) along with the video frame. The input timestamps should be
monotonically increasing for adjacent calls of this method.
Args:
image: MediaPipe Image.
timestamp_ms: The timestamp of the input video frame in milliseconds.
image_processing_options: Options for image processing.
Returns:
The hand landmarks detection results.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If hand landmarker detection failed to run.
"""
normalized_rect = self.convert_to_normalized_rect(
image_processing_options, roi_allowed=False)
output_packets = self._process_video_data({
_IMAGE_IN_STREAM_NAME:
packet_creator.create_image(image).at(
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
_NORM_RECT_STREAM_NAME:
packet_creator.create_proto(normalized_rect.to_pb2()).at(
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
})
if output_packets[_HAND_LANDMARKS_STREAM_NAME].is_empty():
return HandLandmarksDetectionResult([], [], [])
return _build_detection_result(output_packets)
def detect_async(
self,
image: image_module.Image,
timestamp_ms: int,
image_processing_options: Optional[_ImageProcessingOptions] = None
) -> None:
"""Sends live image data to perform hand landmarks detection.
The results will be available via the "result_callback" provided in the
HandLandmarkerOptions. Only use this method when the HandLandmarker is
created with the live stream running mode.
Only use this method when the HandLandmarker is created with the live
stream running mode. The input timestamps should be monotonically increasing
for adjacent calls of this method. This method will return immediately after
the input image is accepted. The results will be available via the
`result_callback` provided in the `HandLandmarkerOptions`. The
`detect_async` method is designed to process live stream data such as
camera input. To lower the overall latency, hand landmarker may drop the
input images if needed. In other words, it's not guaranteed to have output
per input image.
The `result_callback` provides:
- The hand landmarks detection results.
- The input image that the hand landmarker runs on.
- The input timestamp in milliseconds.
Args:
image: MediaPipe Image.
timestamp_ms: The timestamp of the input image in milliseconds.
image_processing_options: Options for image processing.
Raises:
ValueError: If the current input timestamp is smaller than what the
hand landmarker has already processed.
"""
normalized_rect = self.convert_to_normalized_rect(
image_processing_options, roi_allowed=False)
self._send_live_stream_data({
_IMAGE_IN_STREAM_NAME:
packet_creator.create_image(image).at(
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
_NORM_RECT_STREAM_NAME:
packet_creator.create_proto(normalized_rect.to_pb2()).at(
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND)
})