mediapipe/docs/solutions/autoflip.md

373 lines
12 KiB
Markdown
Raw Permalink Normal View History

---
layout: default
title: AutoFlip (Saliency-aware Video Cropping)
parent: Solutions
nav_order: 14
---
# AutoFlip: Saliency-aware Video Cropping
{: .no_toc }
<details close markdown="block">
<summary>
Table of contents
</summary>
{: .text-delta }
1. TOC
{:toc}
</details>
---
**Attention:** *Thank you for your interest in MediaPipe Solutions.
We have ended support for this MediaPipe Legacy Solution as of March 1, 2023.
For more information, see the new
[MediaPipe Solutions](https://developers.google.com/mediapipe/solutions/guide#legacy)
site.*
*This notice and web page will be removed on April 3, 2023.*
----
## Overview
AutoFlip is an automatic video cropping pipeline built on top of MediaPipe. This
example focuses on demonstrating how to use AutoFlip to convert an input video
to arbitrary aspect ratios.
For overall context on AutoFlip, please read this
[Google AI Blog](https://ai.googleblog.com/2020/02/autoflip-open-source-framework-for.html).
![graph is_required](https://mediapipe.dev/images/autoflip_edited_example.gif)
## Building
Run the following command to build the AutoFlip pipeline:
Note: AutoFlip currently only works with OpenCV 3. Please verify your OpenCV
version beforehand.
```bash
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/autoflip:run_autoflip
```
## Running
```bash
GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/autoflip/run_autoflip \
--calculator_graph_config_file=mediapipe/examples/desktop/autoflip/autoflip_graph.pbtxt \
--input_side_packets=input_video_path=/absolute/path/to/the/local/video/file,output_video_path=/absolute/path/to/save/the/output/video/file,aspect_ratio=1:1
```
Use the `aspect_ratio` flag to provide the output aspect ratio. The format
should be `width:height`, where the `width` and `height` are two positive
integers. AutoFlip supports both landscape-to-portrait and portrait-to-landscape
conversions. The pipeline internally compares the target aspect ratio against
the original one, and determines the correct conversion automatically.
We have put a couple test videos under this
[Google Drive folder](https://drive.google.com/corp/drive/u/0/folders/1KK9LV--Ey0UEVpxssVLhVl7dypgJSQgk).
You could download the videos into your local file system, then modify the
command above accordingly to run AutoFlip against the videos.
## MediaPipe Graph
![graph visualization](https://mediapipe.dev/images/autoflip_graph.png)
To visualize the graph as shown above, copy the text specification of the graph
below and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev).
```bash
# Autoflip graph that only renders the final cropped video. For use with
# end user applications.
max_queue_size: -1
# VIDEO_PREP: Decodes an input video file into images and a video header.
node {
calculator: "OpenCvVideoDecoderCalculator"
input_side_packet: "INPUT_FILE_PATH:input_video_path"
output_stream: "VIDEO:video_raw"
output_stream: "VIDEO_PRESTREAM:video_header"
output_side_packet: "SAVED_AUDIO_PATH:audio_path"
}
# VIDEO_PREP: Scale the input video before feature extraction.
node {
calculator: "ScaleImageCalculator"
input_stream: "FRAMES:video_raw"
input_stream: "VIDEO_HEADER:video_header"
output_stream: "FRAMES:video_frames_scaled"
node_options: {
[type.googleapis.com/mediapipe.ScaleImageCalculatorOptions]: {
preserve_aspect_ratio: true
output_format: SRGB
target_width: 480
algorithm: DEFAULT_WITHOUT_UPSCALE
}
}
}
# VIDEO_PREP: Create a low frame rate stream for feature extraction.
node {
calculator: "PacketThinnerCalculator"
input_stream: "video_frames_scaled"
output_stream: "video_frames_scaled_downsampled"
node_options: {
[type.googleapis.com/mediapipe.PacketThinnerCalculatorOptions]: {
thinner_type: ASYNC
period: 200000
}
}
}
# DETECTION: find borders around the video and major background color.
node {
calculator: "BorderDetectionCalculator"
input_stream: "VIDEO:video_raw"
output_stream: "DETECTED_BORDERS:borders"
}
# DETECTION: find shot/scene boundaries on the full frame rate stream.
node {
calculator: "ShotBoundaryCalculator"
input_stream: "VIDEO:video_frames_scaled"
output_stream: "IS_SHOT_CHANGE:shot_change"
options {
[type.googleapis.com/mediapipe.autoflip.ShotBoundaryCalculatorOptions] {
min_shot_span: 0.2
min_motion: 0.3
window_size: 15
min_shot_measure: 10
min_motion_with_shot_measure: 0.05
}
}
}
# DETECTION: find faces on the down sampled stream
node {
calculator: "AutoFlipFaceDetectionSubgraph"
input_stream: "VIDEO:video_frames_scaled_downsampled"
output_stream: "DETECTIONS:face_detections"
}
node {
calculator: "FaceToRegionCalculator"
input_stream: "VIDEO:video_frames_scaled_downsampled"
input_stream: "FACES:face_detections"
output_stream: "REGIONS:face_regions"
}
# DETECTION: find objects on the down sampled stream
node {
calculator: "AutoFlipObjectDetectionSubgraph"
input_stream: "VIDEO:video_frames_scaled_downsampled"
output_stream: "DETECTIONS:object_detections"
}
node {
calculator: "LocalizationToRegionCalculator"
input_stream: "DETECTIONS:object_detections"
output_stream: "REGIONS:object_regions"
options {
[type.googleapis.com/mediapipe.autoflip.LocalizationToRegionCalculatorOptions] {
output_all_signals: true
}
}
}
# SIGNAL FUSION: Combine detections (with weights) on each frame
node {
calculator: "SignalFusingCalculator"
input_stream: "shot_change"
input_stream: "face_regions"
input_stream: "object_regions"
output_stream: "salient_regions"
options {
[type.googleapis.com/mediapipe.autoflip.SignalFusingCalculatorOptions] {
signal_settings {
type { standard: FACE_CORE_LANDMARKS }
min_score: 0.85
max_score: 0.9
is_required: false
}
signal_settings {
type { standard: FACE_ALL_LANDMARKS }
min_score: 0.8
max_score: 0.85
is_required: false
}
signal_settings {
type { standard: FACE_FULL }
min_score: 0.8
max_score: 0.85
is_required: false
}
signal_settings {
type: { standard: HUMAN }
min_score: 0.75
max_score: 0.8
is_required: false
}
signal_settings {
type: { standard: PET }
min_score: 0.7
max_score: 0.75
is_required: false
}
signal_settings {
type: { standard: CAR }
min_score: 0.7
max_score: 0.75
is_required: false
}
signal_settings {
type: { standard: OBJECT }
min_score: 0.1
max_score: 0.2
is_required: false
}
}
}
}
# CROPPING: make decisions about how to crop each frame.
node {
calculator: "SceneCroppingCalculator"
input_side_packet: "EXTERNAL_ASPECT_RATIO:aspect_ratio"
input_stream: "VIDEO_FRAMES:video_raw"
input_stream: "KEY_FRAMES:video_frames_scaled_downsampled"
input_stream: "DETECTION_FEATURES:salient_regions"
input_stream: "STATIC_FEATURES:borders"
input_stream: "SHOT_BOUNDARIES:shot_change"
output_stream: "CROPPED_FRAMES:cropped_frames"
node_options: {
[type.googleapis.com/mediapipe.autoflip.SceneCroppingCalculatorOptions]: {
max_scene_size: 600
key_frame_crop_options: {
score_aggregation_type: CONSTANT
}
scene_camera_motion_analyzer_options: {
motion_stabilization_threshold_percent: 0.5
salient_point_bound: 0.499
}
padding_parameters: {
blur_cv_size: 200
overlay_opacity: 0.6
}
target_size_type: MAXIMIZE_TARGET_DIMENSION
}
}
}
# ENCODING(required): encode the video stream for the final cropped output.
node {
calculator: "VideoPreStreamCalculator"
# Fetch frame format and dimension from input frames.
input_stream: "FRAME:cropped_frames"
# Copying frame rate and duration from original video.
input_stream: "VIDEO_PRESTREAM:video_header"
output_stream: "output_frames_video_header"
}
node {
calculator: "OpenCvVideoEncoderCalculator"
input_stream: "VIDEO:cropped_frames"
input_stream: "VIDEO_PRESTREAM:output_frames_video_header"
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
input_side_packet: "AUDIO_FILE_PATH:audio_path"
node_options: {
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
codec: "avc1"
video_format: "mp4"
}
}
}
```
## Advanced Parameters
### Required vs. Best-Effort Saliency Features
AutoFlip allows users to implement and specify custom features to be used in the
camera trajectory computation. If the user would like to detect and preserve
scenes of lions in a wildlife protection video, for example, they could
implement and add a feature detection calculator for lions into the pipeline.
Refer to `AutoFlipFaceDetectionSubgraph` and `FaceToRegionCalculator`, or
`AutoFlipObjectDetectionSubgraph` and `LocalizationToRegionCalculator` for
examples of how to create new feature detection calculators.
After adding different feature signals into the graph, use the
`SignalFusingCalculator` node to specify types and weights for different feature
signals. For example, in the graph above, we specified a `face_region` and an
`object_region` input streams, to represent face signals and agnostic object
signals, respectively.
The larger the weight, the more important the features will be considered when
AutoFlip computes the camera trajectory. Use the `is_required` flag to mark a
feature as a hard constraint, in which case the computed camera trajectory will
try best to cover these feature types in the cropped videos. If for some reason
the required features cannot be all covered (for example, when they are too
spread out in the video), AutoFlip will apply a padding effect to cover as much
salient content as possible. See an illustration below.
![graph is_required](https://mediapipe.dev/images/autoflip_is_required.gif)
### Stable vs Tracking Camera Motion
AutoFlip makes a decision on each scene whether to have the cropped viewpoint
follow an object or if the crop should remain stable (centered on detected
objects). The parameter `motion_stabilization_threshold_percent` value is used
to make the decision to track action or keep the camera stable. If, over the
duration of the scene, all detected focus objects remain within this ratio of
the frame (e.g. 0.5 = 50% or 1920 * .5 = 960 pixels on 1080p video) then the
camera is held steady. Otherwise the camera tracks activity within the frame.
### Snap To Center
For some scenes the camera viewpoint will remain stable at the center of
activity (see `motion_stabilization_threshold_percent` setting). In this case,
if the determined best stable viewpoint is within
`snap_center_max_distance_percent` of the frame's center the camera will be
shifted to be locked to the center of the frame. This setting is useful for
videos where the camera operator did a good job already centering content or if
titles and logos are expected to appear in the center of the frame. It may be
less useful on raw content where objects are not already well positioned on
screen.
### Visualization to Facilitate Debugging
`SceneCroppingCalculator` provides two extra output streams
`KEY_FRAME_CROP_REGION_VIZ_FRAMES` and `SALIENT_POINT_FRAME_VIZ_FRAMES` to
visualize the cropping window as well as salient points detected on each frame.
You could modify the `SceneCroppingCalculator` node like below to enable these
two output streams.
```bash
node {
calculator: "SceneCroppingCalculator"
input_side_packet: "EXTERNAL_ASPECT_RATIO:aspect_ratio"
input_stream: "VIDEO_FRAMES:video_raw"
input_stream: "KEY_FRAMES:video_frames_scaled_downsampled"
input_stream: "DETECTION_FEATURES:salient_regions"
input_stream: "STATIC_FEATURES:borders"
input_stream: "SHOT_BOUNDARIES:shot_change"
output_stream: "CROPPED_FRAMES:cropped_frames"
output_stream: "KEY_FRAME_CROP_REGION_VIZ_FRAMES:key_frame_crop_viz_frames"
output_stream: "SALIENT_POINT_FRAME_VIZ_FRAMES:salient_point_viz_frames"
node_options: {
[type.googleapis.com/mediapipe.autoflip.SceneCroppingCalculatorOptions]: {
max_scene_size: 600
key_frame_crop_options: {
score_aggregation_type: CONSTANT
}
scene_camera_motion_analyzer_options: {
motion_stabilization_threshold_percent: 0.5
salient_point_bound: 0.499
}
padding_parameters: {
blur_cv_size: 200
overlay_opacity: 0.6
}
target_size_type: MAXIMIZE_TARGET_DIMENSION
}
}
}
```