[MediaPipe](http://mediapipe.dev) is a framework for building multimodal (eg. video, audio, any time series data) applied ML pipelines. With MediaPipe, a perception pipeline can be built as a graph of modular components, including, for instance, inference models (e.g., TensorFlow, TFLite) and media processing functions.
> "<em>MediaPipe has made it extremely easy to build our 3D person pose reconstruction demo app, facilitating accelerated neural network inference on device and synchronization of our result visualization with the video capture stream. Highly recommended!</em>" - George Papandreou, CTO, [Ariel AI](https://arielai.com)
Check out the [Examples page](https://mediapipe.readthedocs.io/en/latest/examples.html) for tutorials on how to use MediaPipe. [Concepts page](https://mediapipe.readthedocs.io/en/latest/concepts.html) for basic definitions
A web-based visualizer is hosted on [viz.mediapipe.dev](https://viz.mediapipe.dev/). Please also see instructions [here](mediapipe/docs/visualizer.md).
* [ML Conference, Berlin 9-11 Dec 2019](https://mlconference.ai/machine-learning-advanced-development/mediapipe-building-real-time-cross-platform-mobile-web-edge-desktop-video-audio-ml-pipelines/)
* [The 3rd Workshop on YouTube-8M Large Scale Video Understanding Workshop](https://research.google.com/youtube8m/workshop2019/index.html) Seoul, Korea ICCV 2019
* [AI DevWorld 2019](https://aidevworld.com) on Oct 10 in San Jose, California
* [Google Industry Workshop at ICIP 2019](http://2019.ieeeicip.org/?action=page4&id=14#Google) [Presentation](https://docs.google.com/presentation/d/e/2PACX-1vRIBBbO_LO9v2YmvbHHEt1cwyqH6EjDxiILjuT0foXy1E7g6uyh4CesB2DkkEwlRDO9_lWfuKMZx98T/pub?start=false&loop=false&delayms=3000&slide=id.g556cc1a659_0_5) on Sept 24 in Taipei, Taiwan
* [Open sourced at CVPR 2019](https://sites.google.com/corp/view/perception-cv4arvr/mediapipe) on June 17~20 in Long Beach, CA