2020-08-13 03:57:56 +02:00
|
|
|
|
---
|
|
|
|
|
layout: default
|
|
|
|
|
title: Pose
|
|
|
|
|
parent: Solutions
|
|
|
|
|
nav_order: 5
|
|
|
|
|
---
|
|
|
|
|
|
2020-11-05 01:02:35 +01:00
|
|
|
|
# MediaPipe Pose
|
2020-08-13 03:57:56 +02:00
|
|
|
|
{: .no_toc }
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
<details close markdown="block">
|
|
|
|
|
<summary>
|
|
|
|
|
Table of contents
|
|
|
|
|
</summary>
|
|
|
|
|
{: .text-delta }
|
2020-08-13 03:57:56 +02:00
|
|
|
|
1. TOC
|
|
|
|
|
{:toc}
|
2020-12-10 04:13:05 +01:00
|
|
|
|
</details>
|
2020-08-13 03:57:56 +02:00
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Overview
|
|
|
|
|
|
|
|
|
|
Human pose estimation from video plays a critical role in various applications
|
|
|
|
|
such as quantifying physical exercises, sign language recognition, and full-body
|
|
|
|
|
gesture control. For example, it can form the basis for yoga, dance, and fitness
|
|
|
|
|
applications. It can also enable the overlay of digital content and information
|
|
|
|
|
on top of the physical world in augmented reality.
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
MediaPipe Pose is a ML solution for high-fidelity body pose tracking, inferring
|
|
|
|
|
33 2D landmarks on the whole body (or 25 upper-body landmarks) from RGB video
|
|
|
|
|
frames utilizing our
|
2020-08-13 21:02:55 +02:00
|
|
|
|
[BlazePose](https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html)
|
2020-12-10 04:13:05 +01:00
|
|
|
|
research that also powers the
|
|
|
|
|
[ML Kit Pose Detection API](https://developers.google.com/ml-kit/vision/pose-detection).
|
|
|
|
|
Current state-of-the-art approaches rely primarily on powerful desktop
|
2020-08-13 21:02:55 +02:00
|
|
|
|
environments for inference, whereas our method achieves real-time performance on
|
|
|
|
|
most modern [mobile phones](#mobile), [desktops/laptops](#desktop), in
|
2020-12-10 04:13:05 +01:00
|
|
|
|
[python](#python) and even on the [web](#web).
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
|
|
|
|
![pose_tracking_upper_body_example.gif](../images/mobile/pose_tracking_upper_body_example.gif) |
|
|
|
|
|
:--------------------------------------------------------------------------------------------: |
|
|
|
|
|
*Fig 1. Example of MediaPipe Pose for upper-body pose tracking.* |
|
|
|
|
|
|
|
|
|
|
## ML Pipeline
|
|
|
|
|
|
|
|
|
|
The solution utilizes a two-step detector-tracker ML pipeline, proven to be
|
|
|
|
|
effective in our [MediaPipe Hands](./hands.md) and
|
|
|
|
|
[MediaPipe Face Mesh](./face_mesh.md) solutions. Using a detector, the pipeline
|
2020-12-10 04:13:05 +01:00
|
|
|
|
first locates the person/pose region-of-interest (ROI) within the frame. The
|
|
|
|
|
tracker subsequently predicts the pose landmarks within the ROI using the
|
|
|
|
|
ROI-cropped frame as input. Note that for video use cases the detector is
|
|
|
|
|
invoked only as needed, i.e., for the very first frame and when the tracker
|
|
|
|
|
could no longer identify body pose presence in the previous frame. For other
|
|
|
|
|
frames the pipeline simply derives the ROI from the previous frame’s pose
|
|
|
|
|
landmarks.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
|
|
|
|
The pipeline is implemented as a MediaPipe
|
2020-12-10 04:13:05 +01:00
|
|
|
|
[graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/pose_tracking_gpu.pbtxt)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
that uses a
|
2020-12-10 04:13:05 +01:00
|
|
|
|
[pose landmark subgraph](https://github.com/google/mediapipe/tree/master/mediapipe/modules/pose_landmark/pose_landmark_gpu.pbtxt)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
from the
|
|
|
|
|
[pose landmark module](https://github.com/google/mediapipe/tree/master/mediapipe/modules/pose_landmark)
|
|
|
|
|
and renders using a dedicated
|
2020-12-10 04:13:05 +01:00
|
|
|
|
[pose renderer subgraph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/subgraphs/pose_renderer_gpu.pbtxt).
|
2020-08-13 03:57:56 +02:00
|
|
|
|
The
|
2020-12-10 04:13:05 +01:00
|
|
|
|
[pose landmark subgraph](https://github.com/google/mediapipe/tree/master/mediapipe/modules/pose_landmark/pose_landmark_gpu.pbtxt)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
internally uses a
|
|
|
|
|
[pose detection subgraph](https://github.com/google/mediapipe/tree/master/mediapipe/modules/pose_detection/pose_detection_gpu.pbtxt)
|
|
|
|
|
from the
|
|
|
|
|
[pose detection module](https://github.com/google/mediapipe/tree/master/mediapipe/modules/pose_detection).
|
|
|
|
|
|
|
|
|
|
Note: To visualize a graph, copy the graph and paste it into
|
|
|
|
|
[MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how
|
|
|
|
|
to visualize its associated subgraphs, please see
|
|
|
|
|
[visualizer documentation](../tools/visualizer.md).
|
|
|
|
|
|
|
|
|
|
## Models
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
### Person/pose Detection Model (BlazePose Detector)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
|
|
|
|
The detector is inspired by our own lightweight
|
|
|
|
|
[BlazeFace](https://arxiv.org/abs/1907.05047) model, used in
|
|
|
|
|
[MediaPipe Face Detection](./face_detection.md), as a proxy for a person
|
|
|
|
|
detector. It explicitly predicts two additional virtual keypoints that firmly
|
|
|
|
|
describe the human body center, rotation and scale as a circle. Inspired by
|
|
|
|
|
[Leonardo’s Vitruvian man](https://en.wikipedia.org/wiki/Vitruvian_Man), we
|
|
|
|
|
predict the midpoint of a person's hips, the radius of a circle circumscribing
|
|
|
|
|
the whole person, and the incline angle of the line connecting the shoulder and
|
|
|
|
|
hip midpoints.
|
|
|
|
|
|
|
|
|
|
![pose_tracking_detector_vitruvian_man.png](../images/mobile/pose_tracking_detector_vitruvian_man.png) |
|
|
|
|
|
:----------------------------------------------------------------------------------------------------: |
|
|
|
|
|
*Fig 2. Vitruvian man aligned via two virtual keypoints predicted by BlazePose detector in addition to the face bounding box.* |
|
|
|
|
|
|
|
|
|
|
### Pose Landmark Model (BlazePose Tracker)
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
The landmark model in MediaPipe Pose comes in two versions: a full-body model
|
|
|
|
|
that predicts the location of 33 pose landmarks (see figure below), and an
|
|
|
|
|
upper-body version that only predicts the first 25. The latter may be more
|
|
|
|
|
accurate than the former in scenarios where the lower-body parts are mostly out
|
|
|
|
|
of view.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
Please find more detail in the
|
|
|
|
|
[BlazePose Google AI Blog](https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html),
|
|
|
|
|
this [paper](https://arxiv.org/abs/2006.10204) and
|
|
|
|
|
[the model card](./models.md#pose), and the attributes in each landmark
|
|
|
|
|
[below](#pose_landmarks).
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
![pose_tracking_full_body_landmarks.png](../images/mobile/pose_tracking_full_body_landmarks.png) |
|
|
|
|
|
:----------------------------------------------------------------------------------------------: |
|
|
|
|
|
*Fig 3. 33 pose landmarks.* |
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
## Solution APIs
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
### Cross-platform Configuration Options
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
Naming style and availability may differ slightly across platforms/languages.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
#### static_image_mode
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
If set to `false`, the solution treats the input images as a video stream. It
|
|
|
|
|
will try to detect the most prominent person in the very first images, and upon
|
|
|
|
|
a successful detection further localizes the pose landmarks. In subsequent
|
|
|
|
|
images, it then simply tracks those landmarks without invoking another detection
|
|
|
|
|
until it loses track, on reducing computation and latency. If set to `true`,
|
|
|
|
|
person detection runs every input image, ideal for processing a batch of static,
|
|
|
|
|
possibly unrelated, images. Default to `false`.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
#### upper_body_only
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
If set to `true`, the solution outputs only the 25 upper-body pose landmarks.
|
|
|
|
|
Otherwise, it outputs the full set of 33 pose landmarks. Note that
|
|
|
|
|
upper-body-only prediction may be more accurate for use cases where the
|
|
|
|
|
lower-body parts are mostly out of view. Default to `false`.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
#### smooth_landmarks
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
If set to `true`, the solution filters pose landmarks across different input
|
|
|
|
|
images to reduce jitter, but ignored if [static_image_mode](#static_image_mode)
|
|
|
|
|
is also set to `true`. Default to `true`.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
#### min_detection_confidence
|
2020-11-05 01:02:35 +01:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
Minimum confidence value (`[0.0, 1.0]`) from the person-detection model for the
|
|
|
|
|
detection to be considered successful. Default to `0.5`.
|
2020-08-30 05:41:10 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
#### min_tracking_confidence
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
Minimum confidence value (`[0.0, 1.0]`) from the landmark-tracking model for the
|
|
|
|
|
pose landmarks to be considered tracked successfully, or otherwise person
|
|
|
|
|
detection will be invoked automatically on the next input image. Setting it to a
|
|
|
|
|
higher value can increase robustness of the solution, at the expense of a higher
|
|
|
|
|
latency. Ignored if [static_image_mode](#static_image_mode) is `true`, where
|
|
|
|
|
person detection simply runs on every image. Default to `0.5`.
|
|
|
|
|
|
|
|
|
|
### Output
|
|
|
|
|
|
|
|
|
|
Naming style may differ slightly across platforms/languages.
|
|
|
|
|
|
|
|
|
|
#### pose_landmarks
|
|
|
|
|
|
|
|
|
|
A list of pose landmarks. Each lanmark consists of the following:
|
|
|
|
|
|
|
|
|
|
* `x` and `y`: Landmark coordinates normalized to `[0.0, 1.0]` by the image
|
|
|
|
|
width and height respectively.
|
|
|
|
|
* `z`: Should be discarded as currently the model is not fully trained to
|
|
|
|
|
predict depth, but this is something on the roadmap.
|
|
|
|
|
* `visibility`: A value in `[0.0, 1.0]` indicating the likelihood of the
|
|
|
|
|
landmark being visible (present and not occluded) in the image.
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
### Python Solution API
|
2020-11-05 01:02:35 +01:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
Please first follow general [instructions](../getting_started/python.md) to
|
|
|
|
|
install MediaPipe Python package, then learn more in the companion [Colab] and
|
|
|
|
|
the following usage example.
|
|
|
|
|
|
|
|
|
|
Supported configuration options:
|
|
|
|
|
|
|
|
|
|
* [static_image_mode](#static_image_mode)
|
|
|
|
|
* [upper_body_only](#upper_body_only)
|
|
|
|
|
* [smooth_landmarks](#smooth_landmarks)
|
|
|
|
|
* [min_detection_confidence](#min_detection_confidence)
|
|
|
|
|
* [min_tracking_confidence](#min_tracking_confidence)
|
2020-11-05 01:02:35 +01:00
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
import cv2
|
|
|
|
|
import mediapipe as mp
|
|
|
|
|
mp_drawing = mp.solutions.drawing_utils
|
|
|
|
|
mp_pose = mp.solutions.pose
|
|
|
|
|
|
|
|
|
|
# For static images:
|
|
|
|
|
pose = mp_pose.Pose(
|
|
|
|
|
static_image_mode=True, min_detection_confidence=0.5)
|
|
|
|
|
for idx, file in enumerate(file_list):
|
|
|
|
|
image = cv2.imread(file)
|
2020-12-10 04:13:05 +01:00
|
|
|
|
image_hight, image_width, _ = image.shape
|
2020-11-05 01:02:35 +01:00
|
|
|
|
# Convert the BGR image to RGB before processing.
|
|
|
|
|
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
if not results.pose_landmarks:
|
|
|
|
|
continue
|
2020-11-05 01:02:35 +01:00
|
|
|
|
print(
|
2020-12-10 04:13:05 +01:00
|
|
|
|
f'Nose coordinates: ('
|
|
|
|
|
f'{results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NOSE].x * image_width}, '
|
|
|
|
|
f'{results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NOSE].y * image_hight})'
|
|
|
|
|
)
|
|
|
|
|
# Draw pose landmarks on the image.
|
2020-11-05 01:02:35 +01:00
|
|
|
|
annotated_image = image.copy()
|
|
|
|
|
mp_drawing.draw_landmarks(
|
|
|
|
|
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
2020-12-10 04:13:05 +01:00
|
|
|
|
cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)
|
2020-11-05 01:02:35 +01:00
|
|
|
|
pose.close()
|
|
|
|
|
|
|
|
|
|
# For webcam input:
|
|
|
|
|
pose = mp_pose.Pose(
|
|
|
|
|
min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
|
|
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
|
while cap.isOpened():
|
|
|
|
|
success, image = cap.read()
|
|
|
|
|
if not success:
|
2020-12-10 04:13:05 +01:00
|
|
|
|
print("Ignoring empty camera frame.")
|
|
|
|
|
# If loading a video, use 'break' instead of 'continue'.
|
|
|
|
|
continue
|
2020-11-05 01:02:35 +01:00
|
|
|
|
|
|
|
|
|
# Flip the image horizontally for a later selfie-view display, and convert
|
|
|
|
|
# the BGR image to RGB.
|
|
|
|
|
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
|
|
|
|
|
# To improve performance, optionally mark the image as not writeable to
|
|
|
|
|
# pass by reference.
|
|
|
|
|
image.flags.writeable = False
|
|
|
|
|
results = pose.process(image)
|
|
|
|
|
|
|
|
|
|
# Draw the pose annotation on the image.
|
|
|
|
|
image.flags.writeable = True
|
|
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
mp_drawing.draw_landmarks(
|
|
|
|
|
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
|
|
|
|
cv2.imshow('MediaPipe Pose', image)
|
|
|
|
|
if cv2.waitKey(5) & 0xFF == 27:
|
|
|
|
|
break
|
|
|
|
|
pose.close()
|
|
|
|
|
cap.release()
|
2020-08-13 03:57:56 +02:00
|
|
|
|
```
|
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
### JavaScript Solution API
|
|
|
|
|
|
|
|
|
|
Please first see general [introduction](../getting_started/javascript.md) on
|
|
|
|
|
MediaPipe in JavaScript, then learn more in the companion [web demo] and the
|
|
|
|
|
following usage example.
|
|
|
|
|
|
|
|
|
|
Supported configuration options:
|
|
|
|
|
|
|
|
|
|
* [upperBodyOnly](#upper_body_only)
|
|
|
|
|
* [smoothLandmarks](#smooth_landmarks)
|
|
|
|
|
* [minDetectionConfidence](#min_detection_confidence)
|
|
|
|
|
* [minTrackingConfidence](#min_tracking_confidence)
|
|
|
|
|
|
|
|
|
|
```html
|
|
|
|
|
<!DOCTYPE html>
|
|
|
|
|
<html>
|
|
|
|
|
<head>
|
|
|
|
|
<meta charset="utf-8">
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/camera_utils/camera_utils.js" crossorigin="anonymous"></script>
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/control_utils/control_utils.js" crossorigin="anonymous"></script>
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/drawing_utils/drawing_utils.js" crossorigin="anonymous"></script>
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/pose/pose.js" crossorigin="anonymous"></script>
|
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
<body>
|
|
|
|
|
<div class="container">
|
|
|
|
|
<video class="input_video"></video>
|
|
|
|
|
<canvas class="output_canvas" width="1280px" height="720px"></canvas>
|
|
|
|
|
</div>
|
|
|
|
|
</body>
|
|
|
|
|
</html>
|
|
|
|
|
```
|
2020-08-30 05:41:10 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
```javascript
|
|
|
|
|
<script type="module">
|
|
|
|
|
const videoElement = document.getElementsByClassName('input_video')[0];
|
|
|
|
|
const canvasElement = document.getElementsByClassName('output_canvas')[0];
|
|
|
|
|
const canvasCtx = canvasElement.getContext('2d');
|
|
|
|
|
|
|
|
|
|
function onResults(results) {
|
|
|
|
|
canvasCtx.save();
|
|
|
|
|
canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height);
|
|
|
|
|
canvasCtx.drawImage(
|
|
|
|
|
results.image, 0, 0, canvasElement.width, canvasElement.height);
|
|
|
|
|
drawConnectors(canvasCtx, results.poseLandmarks, POSE_CONNECTIONS,
|
|
|
|
|
{color: '#00FF00', lineWidth: 4});
|
|
|
|
|
drawLandmarks(canvasCtx, results.poseLandmarks,
|
|
|
|
|
{color: '#FF0000', lineWidth: 2});
|
|
|
|
|
canvasCtx.restore();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const pose = new Pose({locateFile: (file) => {
|
|
|
|
|
return `https://cdn.jsdelivr.net/npm/@mediapipe/pose/${file}`;
|
|
|
|
|
}});
|
|
|
|
|
pose.setOptions({
|
|
|
|
|
upperBodyOnly: false,
|
|
|
|
|
smoothLandmarks: true,
|
|
|
|
|
minDetectionConfidence: 0.5,
|
|
|
|
|
minTrackingConfidence: 0.5
|
|
|
|
|
});
|
|
|
|
|
pose.onResults(onResults);
|
|
|
|
|
|
|
|
|
|
const camera = new Camera(videoElement, {
|
|
|
|
|
onFrame: async () => {
|
|
|
|
|
await pose.send({image: videoElement});
|
|
|
|
|
},
|
|
|
|
|
width: 1280,
|
|
|
|
|
height: 720
|
|
|
|
|
});
|
|
|
|
|
camera.start();
|
|
|
|
|
</script>
|
|
|
|
|
```
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
2020-12-10 04:13:05 +01:00
|
|
|
|
## Example Apps
|
|
|
|
|
|
|
|
|
|
Please first see general instructions for
|
|
|
|
|
[Android](../getting_started/android.md), [iOS](../getting_started/ios.md), and
|
|
|
|
|
[desktop](../getting_started/cpp.md) on how to build MediaPipe examples.
|
|
|
|
|
|
|
|
|
|
Note: To visualize a graph, copy the graph and paste it into
|
|
|
|
|
[MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how
|
|
|
|
|
to visualize its associated subgraphs, please see
|
|
|
|
|
[visualizer documentation](../tools/visualizer.md).
|
|
|
|
|
|
|
|
|
|
### Mobile
|
|
|
|
|
|
|
|
|
|
#### Main Example
|
|
|
|
|
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/pose_tracking_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/pose_tracking_gpu.pbtxt)
|
|
|
|
|
* Android target:
|
|
|
|
|
[(or download prebuilt ARM64 APK)](https://drive.google.com/file/d/17GFIrqEJS6W8UHKXlYevTtSCLxN9pWlY/view?usp=sharing)
|
|
|
|
|
[`mediapipe/examples/android/src/java/com/google/mediapipe/apps/posetrackinggpu:posetrackinggpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/posetrackinggpu/BUILD)
|
|
|
|
|
* iOS target:
|
|
|
|
|
[`mediapipe/examples/ios/posetrackinggpu:PoseTrackingGpuApp`](http:/mediapipe/examples/ios/posetrackinggpu/BUILD)
|
|
|
|
|
|
|
|
|
|
#### Upper-body Only
|
|
|
|
|
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/upper_body_pose_tracking_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/upper_body_pose_tracking_gpu.pbtxt)
|
|
|
|
|
* Android target:
|
|
|
|
|
[(or download prebuilt ARM64 APK)](https://drive.google.com/file/d/1uKc6T7KSuA0Mlq2URi5YookHu0U3yoh_/view?usp=sharing)
|
|
|
|
|
[`mediapipe/examples/android/src/java/com/google/mediapipe/apps/upperbodyposetrackinggpu:upperbodyposetrackinggpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/upperbodyposetrackinggpu/BUILD)
|
|
|
|
|
* iOS target:
|
|
|
|
|
[`mediapipe/examples/ios/upperbodyposetrackinggpu:UpperBodyPoseTrackingGpuApp`](http:/mediapipe/examples/ios/upperbodyposetrackinggpu/BUILD)
|
|
|
|
|
|
|
|
|
|
### Desktop
|
|
|
|
|
|
|
|
|
|
Please first see general instructions for [desktop](../getting_started/cpp.md)
|
|
|
|
|
on how to build MediaPipe examples.
|
|
|
|
|
|
|
|
|
|
#### Main Example
|
|
|
|
|
|
|
|
|
|
* Running on CPU
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/pose_tracking_cpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/pose_tracking_cpu.pbtxt)
|
|
|
|
|
* Target:
|
|
|
|
|
[`mediapipe/examples/desktop/pose_tracking:pose_tracking_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/pose_tracking/BUILD)
|
|
|
|
|
* Running on GPU
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/pose_tracking_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/pose_tracking_gpu.pbtxt)
|
|
|
|
|
* Target:
|
|
|
|
|
[`mediapipe/examples/desktop/pose_tracking:pose_tracking_gpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/pose_tracking/BUILD)
|
|
|
|
|
|
|
|
|
|
#### Upper-body Only
|
|
|
|
|
|
|
|
|
|
* Running on CPU
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/upper_body_pose_tracking_cpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/upper_body_pose_tracking_cpu.pbtxt)
|
|
|
|
|
* Target:
|
|
|
|
|
[`mediapipe/examples/desktop/upper_body_pose_tracking:upper_body_pose_tracking_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/upper_body_pose_tracking/BUILD)
|
|
|
|
|
* Running on GPU
|
|
|
|
|
* Graph:
|
|
|
|
|
[`mediapipe/graphs/pose_tracking/upper_body_pose_tracking_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/pose_tracking/upper_body_pose_tracking_gpu.pbtxt)
|
|
|
|
|
* Target:
|
|
|
|
|
[`mediapipe/examples/desktop/upper_body_pose_tracking:upper_body_pose_tracking_gpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/upper_body_pose_tracking/BUILD)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
|
|
|
|
|
## Resources
|
|
|
|
|
|
|
|
|
|
* Google AI Blog:
|
2020-08-13 21:02:55 +02:00
|
|
|
|
[BlazePose - On-device Real-time Body Pose Tracking](https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html)
|
2020-08-13 03:57:56 +02:00
|
|
|
|
* Paper:
|
|
|
|
|
[BlazePose: On-device Real-time Body Pose Tracking](https://arxiv.org/abs/2006.10204)
|
|
|
|
|
([presentation](https://youtu.be/YPpUOTRn5tA))
|
2020-09-16 03:31:50 +02:00
|
|
|
|
* [Models and model cards](./models.md#pose)
|
2020-12-10 04:13:05 +01:00
|
|
|
|
|
|
|
|
|
[Colab]:https://mediapipe.page.link/pose_py_colab
|
|
|
|
|
|
|
|
|
|
[web demo]:https://code.mediapipe.dev/codepen/pose
|