2020-12-10 04:13:05 +01:00
|
|
|
---
|
2023-03-08 23:08:26 +01:00
|
|
|
layout: forward
|
|
|
|
target: https://developers.google.com/mediapipe/framework/getting_started/python_framework
|
2020-12-10 04:13:05 +01:00
|
|
|
parent: MediaPipe in Python
|
|
|
|
grand_parent: Getting Started
|
|
|
|
nav_order: 1
|
|
|
|
---
|
|
|
|
|
|
|
|
# MediaPipe Python Framework
|
|
|
|
{: .no_toc }
|
|
|
|
|
|
|
|
1. TOC
|
|
|
|
{:toc}
|
|
|
|
---
|
2023-04-04 00:12:06 +02:00
|
|
|
**Attention:** *Thanks for your interest in MediaPipe! We have moved to
|
|
|
|
[https://developers.google.com/mediapipe](https://developers.google.com/mediapipe)
|
|
|
|
as the primary developer documentation site for MediaPipe as of April 3, 2023.*
|
|
|
|
|
|
|
|
----
|
2020-12-10 04:13:05 +01:00
|
|
|
|
|
|
|
The MediaPipe Python framework grants direct access to the core components of
|
|
|
|
the MediaPipe C++ framework such as Timestamp, Packet, and CalculatorGraph,
|
|
|
|
whereas the
|
|
|
|
[ready-to-use Python solutions](./python.md#ready-to-use-python-solutions) hide
|
|
|
|
the technical details of the framework and simply return the readable model
|
|
|
|
inference results back to the callers.
|
|
|
|
|
|
|
|
MediaPipe framework sits on top of
|
|
|
|
[the pybind11 library](https://pybind11.readthedocs.io/en/stable/index.html).
|
|
|
|
The C++ core framework is exposed in Python via a C++/Python language binding.
|
|
|
|
The content below assumes that the reader already has a basic understanding of
|
|
|
|
the MediaPipe C++ framework. Otherwise, you can find useful information in
|
|
|
|
[Framework Concepts](../framework_concepts/framework_concepts.md).
|
|
|
|
|
|
|
|
### Packet
|
|
|
|
|
|
|
|
The packet is the basic data flow unit in MediaPipe. A packet consists of a
|
|
|
|
numeric timestamp and a shared pointer to an immutable payload. In Python, a
|
|
|
|
MediaPipe packet can be created by calling one of the packet creator methods in
|
|
|
|
the
|
|
|
|
[`mp.packet_creator`](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/packet_creator.cc)
|
|
|
|
module. Correspondingly, the packet payload can be retrieved by using one of the
|
|
|
|
packet getter methods in the
|
|
|
|
[`mp.packet_getter`](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/packet_getter.cc)
|
|
|
|
module. Note that the packet payload becomes **immutable** after packet
|
|
|
|
creation. Thus, the modification of the retrieved packet content doesn't affect
|
|
|
|
the actual payload in the packet. MediaPipe framework Python API supports the
|
|
|
|
most commonly used data types of MediaPipe (e.g., ImageFrame, Matrix, Protocol
|
|
|
|
Buffers, and the primitive data types) in the core binding. The comprehensive
|
|
|
|
table below shows the type mappings between the Python and the C++ data type
|
|
|
|
along with the packet creator and the content getter method for each data type
|
|
|
|
supported by the MediaPipe Python framework API.
|
|
|
|
|
|
|
|
Python Data Type | C++ Data Type | Packet Creator | Content Getter
|
|
|
|
------------------------------------ | ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------
|
|
|
|
bool | bool | create_bool(True) | get_bool(packet)
|
|
|
|
int or np.intc | int_t | create_int(1) | get_int(packet)
|
|
|
|
int or np.int8 | int8_t | create_int8(2**7-1) | get_int(packet)
|
|
|
|
int or np.int16 | int16_t | create_int16(2**15-1) | get_int(packet)
|
|
|
|
int or np.int32 | int32_t | create_int32(2**31-1) | get_int(packet)
|
|
|
|
int or np.int64 | int64_t | create_int64(2**63-1) | get_int(packet)
|
|
|
|
int or np.uint8 | uint8_t | create_uint8(2**8-1) | get_uint(packet)
|
|
|
|
int or np.uint16 | uint16_t | create_uint16(2**16-1) | get_uint(packet)
|
|
|
|
int or np.uint32 | uint32_t | create_uint32(2**32-1) | get_uint(packet)
|
|
|
|
int or np.uint64 | uint64_t | create_uint64(2**64-1) | get_uint(packet)
|
|
|
|
float or np.float32 | float | create_float(1.1) | get_float(packet)
|
|
|
|
float or np.double | double | create_double(1.1) | get_float(packet)
|
|
|
|
str (UTF-8) | std::string | create_string('abc') | get_str(packet)
|
|
|
|
bytes | std::string | create_string(b'\xd0\xd0\xd0') | get_bytes(packet)
|
|
|
|
mp.Packet | mp::Packet | create_packet(p) | get_packet(packet)
|
|
|
|
List\[bool\] | std::vector\<bool\> | create_bool_vector(\[True, False\]) | get_bool_list(packet)
|
|
|
|
List\[int\] or List\[np.intc\] | int\[\] | create_int_array(\[1, 2, 3\]) | get_int_list(packet, size=10)
|
|
|
|
List\[int\] or List\[np.intc\] | std::vector\<int\> | create_int_vector(\[1, 2, 3\]) | get_int_list(packet)
|
|
|
|
List\[float\] or List\[np.float\] | float\[\] | create_float_arrary(\[0.1, 0.2\]) | get_float_list(packet, size=10)
|
|
|
|
List\[float\] or List\[np.float\] | std::vector\<float\> | create_float_vector(\[0.1, 0.2\]) | get_float_list(packet, size=10)
|
|
|
|
List\[str\] | std::vector\<std::string\> | create_string_vector(\['a'\]) | get_str_list(packet)
|
|
|
|
List\[mp.Packet\] | std::vector\<mp::Packet\> | create_packet_vector(<br> \[packet1, packet2\]) | get_packet_list(p)
|
|
|
|
Mapping\[str, Packet\] | std::map<std::string, Packet> | create_string_to_packet_map(<br> {'a': packet1, 'b': packet2}) | get_str_to_packet_dict(packet)
|
|
|
|
np.ndarray<br>(cv.mat and PIL.Image) | mp::ImageFrame | create_image_frame(<br> format=ImageFormat.SRGB,<br> data=mat) | get_image_frame(packet)
|
|
|
|
np.ndarray | mp::Matrix | create_matrix(data) | get_matrix(packet)
|
|
|
|
Google Proto Message | Google Proto Message | create_proto(proto) | get_proto(packet)
|
2021-07-24 02:09:32 +02:00
|
|
|
List\[Proto\] | std::vector\<Proto\> | n/a | get_proto_list(packet)
|
2020-12-10 04:13:05 +01:00
|
|
|
|
2023-04-06 01:49:13 +02:00
|
|
|
It's not uncommon that users create custom C++ classes and send those into
|
2020-12-10 04:13:05 +01:00
|
|
|
the graphs and calculators. To allow the custom classes to be used in Python
|
|
|
|
with MediaPipe, you may extend the Packet API for a new data type in the
|
|
|
|
following steps:
|
|
|
|
|
|
|
|
1. Write the pybind11
|
|
|
|
[class binding code](https://pybind11.readthedocs.io/en/stable/advanced/classes.html)
|
|
|
|
or
|
|
|
|
[a custom type caster](https://pybind11.readthedocs.io/en/stable/advanced/cast/custom.html?highlight=custom%20type%20caster)
|
|
|
|
for the custom type in a cc file.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
#include "path/to/my_type/header/file.h"
|
|
|
|
#include "pybind11/pybind11.h"
|
|
|
|
|
|
|
|
namespace py = pybind11;
|
|
|
|
|
|
|
|
PYBIND11_MODULE(my_type_binding, m) {
|
|
|
|
// Write binding code or a custom type caster for MyType.
|
|
|
|
py::class_<MyType>(m, "MyType")
|
|
|
|
.def(py::init<>())
|
|
|
|
.def(...);
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
2. Create a new packet creator and getter method of the custom type in a
|
|
|
|
separate cc file.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
#include "path/to/my_type/header/file.h"
|
|
|
|
#include "mediapipe/framework/packet.h"
|
|
|
|
#include "pybind11/pybind11.h"
|
|
|
|
|
|
|
|
namespace mediapipe {
|
|
|
|
namespace py = pybind11;
|
|
|
|
|
|
|
|
PYBIND11_MODULE(my_packet_methods, m) {
|
|
|
|
m.def(
|
|
|
|
"create_my_type",
|
|
|
|
[](const MyType& my_type) { return MakePacket<MyType>(my_type); });
|
|
|
|
|
|
|
|
m.def(
|
|
|
|
"get_my_type",
|
|
|
|
[](const Packet& packet) {
|
|
|
|
if(!packet.ValidateAsType<MyType>().ok()) {
|
|
|
|
PyErr_SetString(PyExc_ValueError, "Packet data type mismatch.");
|
|
|
|
return py::error_already_set();
|
|
|
|
}
|
|
|
|
return packet.Get<MyType>();
|
|
|
|
});
|
2022-03-21 20:07:37 +01:00
|
|
|
}
|
2020-12-10 04:13:05 +01:00
|
|
|
} // namespace mediapipe
|
|
|
|
```
|
|
|
|
|
|
|
|
3. Add two bazel build rules for the custom type binding and the new packet
|
|
|
|
methods in the BUILD file.
|
|
|
|
|
|
|
|
```
|
|
|
|
load("@pybind11_bazel//:build_defs.bzl", "pybind_extension")
|
|
|
|
|
|
|
|
pybind_extension(
|
|
|
|
name = "my_type_binding",
|
|
|
|
srcs = ["my_type_binding.cc"],
|
|
|
|
deps = [":my_type"],
|
|
|
|
)
|
|
|
|
|
|
|
|
pybind_extension(
|
|
|
|
name = "my_packet_methods",
|
|
|
|
srcs = ["my_packet_methods.cc"],
|
|
|
|
deps = [
|
|
|
|
":my_type",
|
|
|
|
"//mediapipe/framework:packet"
|
|
|
|
],
|
|
|
|
)
|
|
|
|
```
|
|
|
|
|
|
|
|
4. Build the pybind extension targets (with the suffix .so) by Bazel and move the generated dynamic libraries into one of the $LD_LIBRARY_PATH dirs.
|
|
|
|
|
|
|
|
5. Use the binding modules in Python.
|
|
|
|
|
|
|
|
```python
|
|
|
|
import my_type_binding
|
|
|
|
import my_packet_methods
|
|
|
|
|
|
|
|
packet = my_packet_methods.create_my_type(my_type_binding.MyType())
|
|
|
|
my_type = my_packet_methods.get_my_type(packet)
|
|
|
|
```
|
|
|
|
|
|
|
|
### Timestamp
|
|
|
|
|
|
|
|
Each packet contains a timestamp that is in units of microseconds. In Python,
|
|
|
|
the Packet API provides a convenience method `packet.at()` to define the numeric
|
|
|
|
timestamp of a packet. More generally, `packet.timestamp` is the packet class
|
|
|
|
property for accessing the underlying timestamp. To convert an Unix epoch to a
|
|
|
|
MediaPipe timestamp,
|
|
|
|
[the Timestamp API](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/timestamp.cc)
|
|
|
|
offers a method `mp.Timestamp.from_seconds()` for this purpose.
|
|
|
|
|
|
|
|
### ImageFrame
|
|
|
|
|
|
|
|
ImageFrame is the container for storing an image or a video frame. Formats
|
|
|
|
supported by ImageFrame are listed in
|
|
|
|
[the ImageFormat enum](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/image_frame.cc#l=170).
|
|
|
|
Pixels are encoded row-major with interleaved color components, and ImageFrame
|
|
|
|
supports uint8, uint16, and float as its data types. MediaPipe provides
|
|
|
|
[an ImageFrame Python API](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/image_frame.cc)
|
|
|
|
to access the ImageFrame C++ class. In Python, the easiest way to retrieve the
|
|
|
|
pixel data is to call `image_frame.numpy_view()` to get a numpy ndarray. Note
|
|
|
|
that the returned numpy ndarray, a reference to the internal pixel data, is
|
|
|
|
unwritable. If the callers need to modify the numpy ndarray, it's required to
|
|
|
|
explicitly call a copy operation to obtain a copy. When MediaPipe takes a numpy
|
|
|
|
ndarray to make an ImageFrame, it assumes that the data is stored contiguously.
|
|
|
|
Correspondingly, the pixel data of an ImageFrame will be realigned to be
|
|
|
|
contiguous when it's returned to the Python side.
|
|
|
|
|
|
|
|
### Graph
|
|
|
|
|
|
|
|
In MediaPipe, all processing takes places within the context of a
|
|
|
|
CalculatorGraph.
|
|
|
|
[The CalculatorGraph Python API](https://github.com/google/mediapipe/tree/master/mediapipe/python/pybind/calculator_graph.cc)
|
|
|
|
is a direct binding to the C++ CalculatorGraph class. The major difference is
|
|
|
|
the CalculatorGraph Python API raises a Python error instead of returning a
|
|
|
|
non-OK Status when an error occurs. Therefore, as a Python user, you can handle
|
|
|
|
the exceptions as you normally do. The life cycle of a CalculatorGraph contains
|
|
|
|
three stages: initialization and setup, graph run, and graph shutdown.
|
|
|
|
|
|
|
|
1. Initialize a CalculatorGraph with a CalculatorGraphConfig protobuf or binary
|
|
|
|
protobuf file, and provide callback method(s) to observe the output
|
|
|
|
stream(s).
|
|
|
|
|
|
|
|
Option 1. Initialize a CalculatorGraph with a CalculatorGraphConfig protobuf
|
|
|
|
or its text representation, and observe the output stream(s):
|
|
|
|
|
|
|
|
```python
|
|
|
|
import mediapipe as mp
|
|
|
|
|
|
|
|
config_text = """
|
|
|
|
input_stream: 'in_stream'
|
|
|
|
output_stream: 'out_stream'
|
|
|
|
node {
|
|
|
|
calculator: 'PassThroughCalculator'
|
|
|
|
input_stream: 'in_stream'
|
|
|
|
output_stream: 'out_stream'
|
|
|
|
}
|
|
|
|
"""
|
|
|
|
graph = mp.CalculatorGraph(graph_config=config_text)
|
|
|
|
output_packets = []
|
|
|
|
graph.observe_output_stream(
|
|
|
|
'out_stream',
|
|
|
|
lambda stream_name, packet:
|
|
|
|
output_packets.append(mp.packet_getter.get_str(packet)))
|
|
|
|
```
|
|
|
|
|
2023-04-06 01:49:13 +02:00
|
|
|
Option 2. Initialize a CalculatorGraph with a binary protobuf file, and
|
2020-12-10 04:13:05 +01:00
|
|
|
observe the output stream(s).
|
|
|
|
|
|
|
|
```python
|
|
|
|
import mediapipe as mp
|
|
|
|
# resources dependency
|
|
|
|
|
|
|
|
graph = mp.CalculatorGraph(
|
|
|
|
binary_graph=os.path.join(
|
|
|
|
resources.GetRunfilesDir(), 'path/to/your/graph.binarypb'))
|
|
|
|
graph.observe_output_stream(
|
|
|
|
'out_stream',
|
|
|
|
lambda stream_name, packet: print(f'Get {packet} from {stream_name}'))
|
|
|
|
```
|
|
|
|
|
|
|
|
2. Start the graph run and feed packets into the graph.
|
|
|
|
|
|
|
|
```python
|
|
|
|
graph.start_run()
|
|
|
|
|
|
|
|
graph.add_packet_to_input_stream(
|
2021-12-10 23:03:51 +01:00
|
|
|
'in_stream', mp.packet_creator.create_string('abc').at(0))
|
2020-12-10 04:13:05 +01:00
|
|
|
|
|
|
|
rgb_img = cv2.cvtColor(cv2.imread('/path/to/your/image.png'), cv2.COLOR_BGR2RGB)
|
|
|
|
graph.add_packet_to_input_stream(
|
|
|
|
'in_stream',
|
2021-12-10 23:03:51 +01:00
|
|
|
mp.packet_creator.create_image_frame(image_format=mp.ImageFormat.SRGB,
|
2020-12-10 04:13:05 +01:00
|
|
|
data=rgb_img).at(1))
|
|
|
|
```
|
|
|
|
|
|
|
|
3. Close the graph after finish. You may restart the graph for another graph
|
|
|
|
run after the call to `close()`.
|
|
|
|
|
|
|
|
```python
|
|
|
|
graph.close()
|
|
|
|
```
|
|
|
|
|
|
|
|
The Python script can be run by your local Python runtime.
|