154 lines
4.6 KiB
Plaintext
154 lines
4.6 KiB
Plaintext
# MediaPipe graph to detect palms with TensorFlow Lite on GPU.
|
|
|
|
type: "PalmDetectionGpu"
|
|
|
|
# GPU image. (GpuBuffer)
|
|
input_stream: "IMAGE:image"
|
|
|
|
# Complexity of the palm detection model: 0 or 1. Accuracy as well as inference
|
|
# latency generally go up with the model complexity. If unspecified, functions
|
|
# as set to 1. (int)
|
|
input_side_packet: "MODEL_COMPLEXITY:model_complexity"
|
|
|
|
# Detected palms. (std::vector<Detection>)
|
|
# NOTE: there will not be an output packet in the DETECTIONS stream for this
|
|
# particular timestamp if none of palms detected. However, the MediaPipe
|
|
# framework will internally inform the downstream calculators of the absence of
|
|
# this packet so that they don't wait for it unnecessarily.
|
|
output_stream: "DETECTIONS:detections"
|
|
|
|
# Transforms an image into a 256x256 tensor while keeping the aspect ratio, and
|
|
# therefore may result in potential letterboxing.
|
|
node {
|
|
calculator: "ImageToTensorCalculator"
|
|
input_stream: "IMAGE_GPU:image"
|
|
output_stream: "TENSORS:input_tensor"
|
|
output_stream: "LETTERBOX_PADDING:letterbox_padding"
|
|
options: {
|
|
[mediapipe.ImageToTensorCalculatorOptions.ext] {
|
|
output_tensor_width: 192
|
|
output_tensor_height: 192
|
|
keep_aspect_ratio: true
|
|
output_tensor_float_range {
|
|
min: 0.0
|
|
max: 1.0
|
|
}
|
|
border_mode: BORDER_ZERO
|
|
gpu_origin: TOP_LEFT
|
|
}
|
|
}
|
|
}
|
|
# Generates a single side packet containing a TensorFlow Lite op resolver that
|
|
# supports custom ops needed by the model used in this graph.
|
|
node {
|
|
calculator: "TfLiteCustomOpResolverCalculator"
|
|
output_side_packet: "opresolver"
|
|
options: {
|
|
[mediapipe.TfLiteCustomOpResolverCalculatorOptions.ext] {
|
|
use_gpu: true
|
|
}
|
|
}
|
|
}
|
|
|
|
# Loads the palm detection TF Lite model.
|
|
node {
|
|
calculator: "PalmDetectionModelLoader"
|
|
input_side_packet: "MODEL_COMPLEXITY:model_complexity"
|
|
output_side_packet: "MODEL:model"
|
|
}
|
|
|
|
# Runs a TensorFlow Lite model on GPU that takes an image tensor and outputs a
|
|
# vector of tensors representing, for instance, detection boxes/keypoints and
|
|
# scores.
|
|
node {
|
|
calculator: "InferenceCalculator"
|
|
input_stream: "TENSORS:input_tensor"
|
|
output_stream: "TENSORS:detection_tensors"
|
|
input_side_packet: "CUSTOM_OP_RESOLVER:opresolver"
|
|
input_side_packet: "MODEL:model"
|
|
options: {
|
|
[mediapipe.InferenceCalculatorOptions.ext] {
|
|
delegate { gpu {} }
|
|
}
|
|
}
|
|
}
|
|
|
|
# Generates a single side packet containing a vector of SSD anchors based on
|
|
# the specification in the options.
|
|
node {
|
|
calculator: "SsdAnchorsCalculator"
|
|
output_side_packet: "anchors"
|
|
options: {
|
|
[mediapipe.SsdAnchorsCalculatorOptions.ext] {
|
|
num_layers: 4
|
|
min_scale: 0.1484375
|
|
max_scale: 0.75
|
|
input_size_width: 192
|
|
input_size_height: 192
|
|
anchor_offset_x: 0.5
|
|
anchor_offset_y: 0.5
|
|
strides: 8
|
|
strides: 16
|
|
strides: 16
|
|
strides: 16
|
|
aspect_ratios: 1.0
|
|
fixed_anchor_size: true
|
|
}
|
|
}
|
|
}
|
|
|
|
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
|
|
# the SSD anchors and the specification in the options, into a vector of
|
|
# detections. Each detection describes a detected object.
|
|
node {
|
|
calculator: "TensorsToDetectionsCalculator"
|
|
input_stream: "TENSORS:detection_tensors"
|
|
input_side_packet: "ANCHORS:anchors"
|
|
output_stream: "DETECTIONS:unfiltered_detections"
|
|
options: {
|
|
[mediapipe.TensorsToDetectionsCalculatorOptions.ext] {
|
|
num_classes: 1
|
|
num_boxes: 2016
|
|
num_coords: 18
|
|
box_coord_offset: 0
|
|
keypoint_coord_offset: 4
|
|
num_keypoints: 7
|
|
num_values_per_keypoint: 2
|
|
sigmoid_score: true
|
|
score_clipping_thresh: 100.0
|
|
reverse_output_order: true
|
|
|
|
x_scale: 192.0
|
|
y_scale: 192.0
|
|
w_scale: 192.0
|
|
h_scale: 192.0
|
|
min_score_thresh: 0.5
|
|
}
|
|
}
|
|
}
|
|
|
|
# Performs non-max suppression to remove excessive detections.
|
|
node {
|
|
calculator: "NonMaxSuppressionCalculator"
|
|
input_stream: "unfiltered_detections"
|
|
output_stream: "filtered_detections"
|
|
options: {
|
|
[mediapipe.NonMaxSuppressionCalculatorOptions.ext] {
|
|
min_suppression_threshold: 0.3
|
|
overlap_type: INTERSECTION_OVER_UNION
|
|
algorithm: WEIGHTED
|
|
}
|
|
}
|
|
}
|
|
|
|
# Adjusts detection locations (already normalized to [0.f, 1.f]) on the
|
|
# letterboxed image (after image transformation with the FIT scale mode) to the
|
|
# corresponding locations on the same image with the letterbox removed (the
|
|
# input image to the graph before image transformation).
|
|
node {
|
|
calculator: "DetectionLetterboxRemovalCalculator"
|
|
input_stream: "DETECTIONS:filtered_detections"
|
|
input_stream: "LETTERBOX_PADDING:letterbox_padding"
|
|
output_stream: "DETECTIONS:detections"
|
|
}
|