163 lines
5.1 KiB
Plaintext
163 lines
5.1 KiB
Plaintext
# MediaPipe subgraph to calculate iris landmarks and eye contour landmarks for
|
|
# a single eye. (GPU input, and inference is executed on GPU.)
|
|
#
|
|
# It is required that "iris_landmark.tflite" is available at
|
|
# "mediapipe/modules/iris_landmark/iris_landmark.tflite"
|
|
# path during execution.
|
|
#
|
|
# EXAMPLE:
|
|
# node {
|
|
# calculator: "IrisLandmarkGpu"
|
|
# input_stream: "IMAGE:image"
|
|
# input_stream: "ROI:eye_roi"
|
|
# input_stream: "IS_RIGHT_EYE:is_right_eye"
|
|
# output_stream: "EYE_CONTOUR_LANDMARKS:eye_contour_landmarks"
|
|
# output_stream: "IRIS_LANDMARKS:iris_landmarks"
|
|
# }
|
|
|
|
type: "IrisLandmarkGpu"
|
|
|
|
# GPU buffer. (GpuBuffer)
|
|
input_stream: "IMAGE:image"
|
|
# ROI (region of interest) within the given image where an eye is located.
|
|
# (NormalizedRect)
|
|
input_stream: "ROI:roi"
|
|
# Is right eye. (bool)
|
|
# (Model is trained to detect left eye landmarks only, hence for right eye,
|
|
# flipping is required to immitate left eye.)
|
|
input_stream: "IS_RIGHT_EYE:is_right_eye"
|
|
|
|
# TfLite model to detect iris landmarks.
|
|
# (std::unique_ptr<tflite::FlatBufferModel,
|
|
# std::function<void(tflite::FlatBufferModel*)>>)
|
|
# NOTE: currently, mediapipe/modules/iris_landmark/iris_landmark.tflite model
|
|
# only, can be passed here, otherwise - results are undefined.
|
|
input_side_packet: "MODEL:model"
|
|
|
|
# 71 refined normalized eye contour landmarks. (NormalizedLandmarkList)
|
|
output_stream: "EYE_CONTOUR_LANDMARKS:projected_eye_landmarks"
|
|
# 5 normalized iris landmarks. (NormalizedLandmarkList)
|
|
output_stream: "IRIS_LANDMARKS:projected_iris_landmarks"
|
|
|
|
node {
|
|
calculator: "ImageCroppingCalculator"
|
|
input_stream: "IMAGE_GPU:image"
|
|
input_stream: "NORM_RECT:roi"
|
|
output_stream: "IMAGE_GPU:eye_image"
|
|
options: {
|
|
[mediapipe.ImageCroppingCalculatorOptions.ext] {
|
|
border_mode: BORDER_REPLICATE
|
|
}
|
|
}
|
|
}
|
|
|
|
node {
|
|
calculator: "ImageTransformationCalculator"
|
|
input_stream: "IMAGE_GPU:eye_image"
|
|
input_stream: "FLIP_HORIZONTALLY:is_right_eye"
|
|
output_stream: "IMAGE_GPU:transformed_eye_image"
|
|
output_stream: "LETTERBOX_PADDING:eye_letterbox_padding"
|
|
options: {
|
|
[mediapipe.ImageTransformationCalculatorOptions.ext] {
|
|
output_width: 64
|
|
output_height: 64
|
|
scale_mode: FIT
|
|
}
|
|
}
|
|
}
|
|
|
|
# Converts the transformed input image on CPU into an image tensor stored as a
|
|
# TfLiteTensor.
|
|
node {
|
|
calculator: "TfLiteConverterCalculator"
|
|
input_stream: "IMAGE_GPU:transformed_eye_image"
|
|
output_stream: "TENSORS_GPU:image_tensor"
|
|
options: {
|
|
[mediapipe.TfLiteConverterCalculatorOptions.ext] {
|
|
zero_center: false
|
|
}
|
|
}
|
|
}
|
|
|
|
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
|
# vector of tensors representing, for instance, detection boxes/keypoints and
|
|
# scores.
|
|
node {
|
|
calculator: "TfLiteInferenceCalculator"
|
|
input_stream: "TENSORS_GPU:image_tensor"
|
|
output_stream: "TENSORS:output_tensors"
|
|
options: {
|
|
[mediapipe.TfLiteInferenceCalculatorOptions.ext] {
|
|
model_path: "mediapipe/modules/iris_landmark/iris_landmark.tflite"
|
|
}
|
|
}
|
|
}
|
|
|
|
# Splits a vector of TFLite tensors to multiple vectors according to the ranges
|
|
# specified in option.
|
|
node {
|
|
calculator: "SplitTfLiteTensorVectorCalculator"
|
|
input_stream: "output_tensors"
|
|
output_stream: "eye_landmarks_tensor"
|
|
output_stream: "iris_landmarks_tensor"
|
|
options: {
|
|
[mediapipe.SplitVectorCalculatorOptions.ext] {
|
|
ranges: { begin: 0 end: 1 }
|
|
ranges: { begin: 1 end: 2 }
|
|
}
|
|
}
|
|
}
|
|
|
|
# Decodes the landmark tensors into a vector of landmarks, where the landmark
|
|
# coordinates are normalized by the size of the input image to the model.
|
|
node {
|
|
calculator: "TfLiteTensorsToLandmarksCalculator"
|
|
input_stream: "TENSORS:iris_landmarks_tensor"
|
|
input_stream: "FLIP_HORIZONTALLY:is_right_eye"
|
|
output_stream: "NORM_LANDMARKS:iris_landmarks"
|
|
options: {
|
|
[mediapipe.TfLiteTensorsToLandmarksCalculatorOptions.ext] {
|
|
num_landmarks: 5
|
|
input_image_width: 64
|
|
input_image_height: 64
|
|
}
|
|
}
|
|
}
|
|
|
|
# Decodes the landmark tensors into a vector of landmarks, where the landmark
|
|
# coordinates are normalized by the size of the input image to the model.
|
|
node {
|
|
calculator: "TfLiteTensorsToLandmarksCalculator"
|
|
input_stream: "TENSORS:eye_landmarks_tensor"
|
|
input_stream: "FLIP_HORIZONTALLY:is_right_eye"
|
|
output_stream: "NORM_LANDMARKS:eye_landmarks"
|
|
options: {
|
|
[mediapipe.TfLiteTensorsToLandmarksCalculatorOptions.ext] {
|
|
num_landmarks: 71
|
|
input_image_width: 64
|
|
input_image_height: 64
|
|
}
|
|
}
|
|
}
|
|
|
|
node {
|
|
calculator: "LandmarkLetterboxRemovalCalculator"
|
|
input_stream: "LANDMARKS:0:iris_landmarks"
|
|
input_stream: "LANDMARKS:1:eye_landmarks"
|
|
input_stream: "LETTERBOX_PADDING:eye_letterbox_padding"
|
|
output_stream: "LANDMARKS:0:padded_iris_landmarks"
|
|
output_stream: "LANDMARKS:1:padded_eye_landmarks"
|
|
}
|
|
|
|
# Projects the landmarks from the cropped face image to the corresponding
|
|
# locations on the full image before cropping (input to the graph).
|
|
node {
|
|
calculator: "LandmarkProjectionCalculator"
|
|
input_stream: "NORM_LANDMARKS:0:padded_iris_landmarks"
|
|
input_stream: "NORM_LANDMARKS:1:padded_eye_landmarks"
|
|
input_stream: "NORM_RECT:roi"
|
|
output_stream: "NORM_LANDMARKS:0:projected_iris_landmarks"
|
|
output_stream: "NORM_LANDMARKS:1:projected_eye_landmarks"
|
|
}
|
|
|