# MediaPipe graph that performs template matching with TensorFlow Lite on CPU. # Used in the examples in # mediapipe/examples/android/src/java/com/mediapipe/apps/templatematchingcpu # Images on GPU coming into and out of the graph. input_stream: "input_video" output_stream: "output_video" # Throttles the images flowing downstream for flow control. node { calculator: "FlowLimiterCalculator" input_stream: "input_video" input_stream: "FINISHED:detections" input_stream_info: { tag_index: "FINISHED" back_edge: true } output_stream: "throttled_input_video" } # Transfers the input image from GPU to CPU memory. node: { calculator: "GpuBufferToImageFrameCalculator" input_stream: "throttled_input_video" output_stream: "input_video_cpu" } # Scale the image's longer side to 640, keeping aspect ratio. node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE:input_video_cpu" output_stream: "IMAGE:transformed_input_video_cpu" node_options: { [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { output_width: 640 output_height: 640 scale_mode: FILL_AND_CROP } } } node { calculator: "ImagePropertiesCalculator" input_stream: "IMAGE:transformed_input_video_cpu" output_stream: "SIZE:input_video_size" } node { calculator: "FeatureDetectorCalculator" input_stream: "IMAGE:transformed_input_video_cpu" output_stream: "FEATURES:features" output_stream: "LANDMARKS:landmarks" output_stream: "PATCHES:patches" } # input tensors: 200*32*32*1 float # output tensors: 200*40 float, only first keypoint.size()*40 is knift features, # rest is padded by zero. node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS:patches" output_stream: "TENSORS:knift_feature_tensors" node_options: { [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { model_path: "mediapipe/models/knift_float.tflite" delegate { xnnpack {} } } } } node { calculator: "TfLiteTensorsToFloatsCalculator" input_stream: "TENSORS:knift_feature_tensors" output_stream: "FLOATS:knift_feature_floats" } node { calculator: "BoxDetectorCalculator" input_stream: "FEATURES:features" input_stream: "IMAGE_SIZE:input_video_size" input_stream: "DESCRIPTORS:knift_feature_floats" output_stream: "BOXES:detections" node_options: { [type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] { detector_options { index_type: OPENCV_BF detect_every_n_frame: 1 } index_proto_filename: "mediapipe/models/knift_index.pb" } } } node { calculator: "TimedBoxListIdToLabelCalculator" input_stream: "detections" output_stream: "labeled_detections" node_options: { [type.googleapis.com/mediapipe.TimedBoxListIdToLabelCalculatorOptions] { label_map_path: "mediapipe/models/knift_labelmap.txt" } } } node { calculator: "TimedBoxListToRenderDataCalculator" input_stream: "BOX_LIST:labeled_detections" output_stream: "RENDER_DATA:box_render_data" node_options: { [type.googleapis.com/mediapipe.TimedBoxListToRenderDataCalculatorOptions] { box_color { r: 255 g: 0 b: 0 } thickness: 5.0 } } } node { calculator: "LandmarksToRenderDataCalculator" input_stream: "NORM_LANDMARKS:landmarks" output_stream: "RENDER_DATA:landmarks_render_data" node_options: { [type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] { landmark_color { r: 0 g: 255 b: 0 } thickness: 2.0 } } } # Draws annotations and overlays them on top of the input images. node { calculator: "AnnotationOverlayCalculator" input_stream: "IMAGE_GPU:throttled_input_video" input_stream: "box_render_data" input_stream: "landmarks_render_data" output_stream: "IMAGE_GPU:output_video" }