# MediaPipe graph that performs pose tracking with TensorFlow Lite on CPU. # CPU buffer. (ImageFrame) input_stream: "input_video" # Output image with rendered results. (ImageFrame) output_stream: "output_video" # Pose landmarks. (NormalizedLandmarkList) output_stream: "pose_landmarks" # Generates side packet to enable segmentation. node { calculator: "ConstantSidePacketCalculator" output_side_packet: "PACKET:enable_segmentation" node_options: { [type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: { packet { bool_value: true } } } } # Throttles the images flowing downstream for flow control. It passes through # the very first incoming image unaltered, and waits for downstream nodes # (calculators and subgraphs) in the graph to finish their tasks before it # passes through another image. All images that come in while waiting are # dropped, limiting the number of in-flight images in most part of the graph to # 1. This prevents the downstream nodes from queuing up incoming images and data # excessively, which leads to increased latency and memory usage, unwanted in # real-time mobile applications. It also eliminates unnecessarily computation, # e.g., the output produced by a node may get dropped downstream if the # subsequent nodes are still busy processing previous inputs. node { calculator: "FlowLimiterCalculator" input_stream: "input_video" input_stream: "FINISHED:output_video" input_stream_info: { tag_index: "FINISHED" back_edge: true } output_stream: "throttled_input_video" } # Subgraph that detects poses and corresponding landmarks. node { calculator: "PoseLandmarkCpu" input_side_packet: "ENABLE_SEGMENTATION:enable_segmentation" input_stream: "IMAGE:throttled_input_video" output_stream: "LANDMARKS:pose_landmarks" output_stream: "SEGMENTATION_MASK:segmentation_mask" output_stream: "DETECTION:pose_detection" output_stream: "ROI_FROM_LANDMARKS:roi_from_landmarks" } # Subgraph that renders pose-landmark annotation onto the input image. node { calculator: "PoseRendererCpu" input_stream: "IMAGE:throttled_input_video" input_stream: "LANDMARKS:pose_landmarks" input_stream: "SEGMENTATION_MASK:segmentation_mask" input_stream: "DETECTION:pose_detection" input_stream: "ROI:roi_from_landmarks" output_stream: "IMAGE:output_video" }