# MediaPipe graph that performs object detection with TensorFlow Lite on GPU. # Used in the examples in # mediapipe/examples/android/src/java/com/mediapipe/apps/objectdetectiongpu and # mediapipe/examples/ios/objectdetectiongpu. # Images on GPU coming into and out of the graph. input_stream: "input_video" output_stream: "output_video" # Throttles the images flowing downstream for flow control. It passes through # the very first incoming image unaltered, and waits for # TfLiteTensorsToDetectionsCalculator downstream in the graph to finish # generating the corresponding detections before it passes through another # image. All images that come in while waiting are dropped, limiting the number # of in-flight images between this calculator and # TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between # from queuing up incoming images and data excessively, which leads to increased # latency and memory usage, unwanted in real-time mobile applications. It also # eliminates unnecessarily computation, e.g., a transformed image produced by # ImageTransformationCalculator may get dropped downstream if the subsequent # TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy # processing previous inputs. node { calculator: "FlowLimiterCalculator" input_stream: "input_video" input_stream: "FINISHED:detections" input_stream_info: { tag_index: "FINISHED" back_edge: true } output_stream: "throttled_input_video" } # Transforms the input image on GPU to a 320x320 image. To scale the image, by # default it uses the STRETCH scale mode that maps the entire input image to the # entire transformed image. As a result, image aspect ratio may be changed and # objects in the image may be deformed (stretched or squeezed), but the object # detection model used in this graph is agnostic to that deformation. node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE_GPU:throttled_input_video" output_stream: "IMAGE_GPU:transformed_input_video" node_options: { [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { output_width: 320 output_height: 320 } } } # Converts the transformed input image on GPU into an image tensor stored as a # TfLiteTensor. node { calculator: "TfLiteConverterCalculator" input_stream: "IMAGE_GPU:transformed_input_video" output_stream: "TENSORS_GPU:image_tensor" } # Runs a TensorFlow Lite model on GPU that takes an image tensor and outputs a # vector of tensors representing, for instance, detection boxes/keypoints and # scores. node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS_GPU:image_tensor" output_stream: "TENSORS_GPU:detection_tensors" node_options: { [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { model_path: "mediapipe/models/ssdlite_object_detection.tflite" } } } # Generates a single side packet containing a vector of SSD anchors based on # the specification in the options. node { calculator: "SsdAnchorsCalculator" output_side_packet: "anchors" node_options: { [type.googleapis.com/mediapipe.SsdAnchorsCalculatorOptions] { num_layers: 6 min_scale: 0.2 max_scale: 0.95 input_size_height: 320 input_size_width: 320 anchor_offset_x: 0.5 anchor_offset_y: 0.5 strides: 16 strides: 32 strides: 64 strides: 128 strides: 256 strides: 512 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 aspect_ratios: 3.0 aspect_ratios: 0.3333 reduce_boxes_in_lowest_layer: true } } } # Decodes the detection tensors generated by the TensorFlow Lite model, based on # the SSD anchors and the specification in the options, into a vector of # detections. Each detection describes a detected object. node { calculator: "TfLiteTensorsToDetectionsCalculator" input_stream: "TENSORS_GPU:detection_tensors" input_side_packet: "ANCHORS:anchors" output_stream: "DETECTIONS:detections" node_options: { [type.googleapis.com/mediapipe.TfLiteTensorsToDetectionsCalculatorOptions] { num_classes: 91 num_boxes: 2034 num_coords: 4 ignore_classes: 0 sigmoid_score: true apply_exponential_on_box_size: true x_scale: 10.0 y_scale: 10.0 h_scale: 5.0 w_scale: 5.0 min_score_thresh: 0.6 } } } # Performs non-max suppression to remove excessive detections. node { calculator: "NonMaxSuppressionCalculator" input_stream: "detections" output_stream: "filtered_detections" node_options: { [type.googleapis.com/mediapipe.NonMaxSuppressionCalculatorOptions] { min_suppression_threshold: 0.4 max_num_detections: 3 overlap_type: INTERSECTION_OVER_UNION return_empty_detections: true } } } # Maps detection label IDs to the corresponding label text. The label map is # provided in the label_map_path option. node { calculator: "DetectionLabelIdToTextCalculator" input_stream: "filtered_detections" output_stream: "output_detections" node_options: { [type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] { label_map_path: "mediapipe/models/ssdlite_object_detection_labelmap.txt" } } } # Converts the detections to drawing primitives for annotation overlay. node { calculator: "DetectionsToRenderDataCalculator" input_stream: "DETECTIONS:output_detections" output_stream: "RENDER_DATA:render_data" node_options: { [type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] { thickness: 4.0 color { r: 255 g: 0 b: 0 } } } } # Draws annotations and overlays them on top of the input images. node { calculator: "AnnotationOverlayCalculator" input_stream: "IMAGE_GPU:throttled_input_video" input_stream: "render_data" output_stream: "IMAGE_GPU:output_video" }