# MediaPipe graph that performs iris tracking on desktop with TensorFlow Lite # on CPU. # max_queue_size limits the number of packets enqueued on any input stream # by throttling inputs to the graph. This makes the graph only process one # frame per time. max_queue_size: 1 # Decodes an input video file into images and a video header. node { calculator: "OpenCvVideoDecoderCalculator" input_side_packet: "INPUT_FILE_PATH:input_video_path" output_stream: "VIDEO:input_video" output_stream: "VIDEO_PRESTREAM:input_video_header" } # Defines how many faces to detect. Iris tracking currently only handles one # face (left and right eye), and therefore this should always be set to 1. node { calculator: "ConstantSidePacketCalculator" output_side_packet: "PACKET:0:num_faces" node_options: { [type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: { packet { int_value: 1 } } } } # Detects faces and corresponding landmarks. node { calculator: "FaceLandmarkFrontCpu" input_stream: "IMAGE:input_video" input_side_packet: "NUM_FACES:num_faces" output_stream: "LANDMARKS:multi_face_landmarks" output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks" output_stream: "DETECTIONS:face_detections" output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections" } # Gets the very first and only face from "multi_face_landmarks" vector. node { calculator: "SplitNormalizedLandmarkListVectorCalculator" input_stream: "multi_face_landmarks" output_stream: "face_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 0 end: 1 } element_only: true } } } # Gets the very first and only face rect from "face_rects_from_landmarks" # vector. node { calculator: "SplitNormalizedRectVectorCalculator" input_stream: "face_rects_from_landmarks" output_stream: "face_rect" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 0 end: 1 } element_only: true } } } # Gets two landmarks which define left eye boundary. node { calculator: "SplitNormalizedLandmarkListCalculator" input_stream: "face_landmarks" output_stream: "left_eye_boundary_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 33 end: 34 } ranges: { begin: 133 end: 134 } combine_outputs: true } } } # Gets two landmarks which define right eye boundary. node { calculator: "SplitNormalizedLandmarkListCalculator" input_stream: "face_landmarks" output_stream: "right_eye_boundary_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 362 end: 363 } ranges: { begin: 263 end: 264 } combine_outputs: true } } } # Detects iris landmarks, eye contour landmarks, and corresponding rect (ROI). node { calculator: "IrisLandmarkLeftAndRightCpu" input_stream: "IMAGE:input_video" input_stream: "LEFT_EYE_BOUNDARY_LANDMARKS:left_eye_boundary_landmarks" input_stream: "RIGHT_EYE_BOUNDARY_LANDMARKS:right_eye_boundary_landmarks" output_stream: "LEFT_EYE_CONTOUR_LANDMARKS:left_eye_contour_landmarks" output_stream: "LEFT_EYE_IRIS_LANDMARKS:left_iris_landmarks" output_stream: "LEFT_EYE_ROI:left_eye_rect_from_landmarks" output_stream: "RIGHT_EYE_CONTOUR_LANDMARKS:right_eye_contour_landmarks" output_stream: "RIGHT_EYE_IRIS_LANDMARKS:right_iris_landmarks" output_stream: "RIGHT_EYE_ROI:right_eye_rect_from_landmarks" } node { calculator: "ConcatenateNormalizedLandmarkListCalculator" input_stream: "left_eye_contour_landmarks" input_stream: "right_eye_contour_landmarks" output_stream: "refined_eye_landmarks" } node { calculator: "UpdateFaceLandmarksCalculator" input_stream: "NEW_EYE_LANDMARKS:refined_eye_landmarks" input_stream: "FACE_LANDMARKS:face_landmarks" output_stream: "UPDATED_FACE_LANDMARKS:updated_face_landmarks" } # Renders annotations and overlays them on top of the input images. node { calculator: "IrisRendererCpu" input_stream: "IMAGE:input_video" input_stream: "FACE_LANDMARKS:updated_face_landmarks" input_stream: "EYE_LANDMARKS_LEFT:left_eye_contour_landmarks" input_stream: "EYE_LANDMARKS_RIGHT:right_eye_contour_landmarks" input_stream: "IRIS_LANDMARKS_LEFT:left_iris_landmarks" input_stream: "IRIS_LANDMARKS_RIGHT:right_iris_landmarks" input_stream: "NORM_RECT:face_rect" input_stream: "LEFT_EYE_RECT:left_eye_rect_from_landmarks" input_stream: "RIGHT_EYE_RECT:right_eye_rect_from_landmarks" input_stream: "DETECTIONS:face_detections" output_stream: "IRIS_LANDMARKS:iris_landmarks" output_stream: "IMAGE:output_video" } # Encodes the annotated images into a video file, adopting properties specified # in the input video header, e.g., video framerate. node { calculator: "OpenCvVideoEncoderCalculator" input_stream: "VIDEO:output_video" input_stream: "VIDEO_PRESTREAM:input_video_header" input_side_packet: "OUTPUT_FILE_PATH:output_video_path" node_options: { [type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: { codec: "avc1" video_format: "mp4" } } }