# MediaPipe graph that performs iris distance computation on desktop with # TensorFlow Lite on CPU. # Used in the example in # mediapipie/examples/desktop/iris_tracking:iris_depth_from_image_desktop. # Raw image bytes. (std::string) input_stream: "input_image_bytes" # Image with all the detections rendered. (ImageFrame) output_stream: "output_image" # Estimated depth in mm from the camera to the left iris of the face (if any) in # the image. (float) output_stream: "left_iris_depth_mm" # Estimated depth in mm from the camera to the right iris of the face (if any) # in the image. (float) output_stream: "right_iris_depth_mm" # Computes the focal length in pixels based on EXIF information stored in the # image file. The output is an ImageFileProperties object containing relevant # image EXIF information along with focal length in pixels. node { calculator: "ImageFilePropertiesCalculator" input_stream: "input_image_bytes" output_side_packet: "image_file_properties" } # Converts a raw string with encoded image bytes into an ImageFrame object # via OpenCV so that it can be processed by downstream calculators. node { calculator: "OpenCvEncodedImageToImageFrameCalculator" input_stream: "input_image_bytes" output_stream: "input_image" } # Defines how many faces to detect. Iris tracking currently only handles one # face (left and right eye), and therefore this should always be set to 1. node { calculator: "ConstantSidePacketCalculator" output_side_packet: "PACKET:0:num_faces" node_options: { [type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: { packet { int_value: 1 } } } } # Detects faces and corresponding landmarks. node { calculator: "FaceLandmarkFrontCpu" input_stream: "IMAGE:input_image" input_side_packet: "NUM_FACES:num_faces" output_stream: "LANDMARKS:multi_face_landmarks" output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks" output_stream: "DETECTIONS:face_detections" output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections" } # Gets the very first and only face from "multi_face_landmarks" vector. node { calculator: "SplitNormalizedLandmarkListVectorCalculator" input_stream: "multi_face_landmarks" output_stream: "face_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 0 end: 1 } element_only: true } } } # Gets the very first and only face rect from "face_rects_from_landmarks" # vector. node { calculator: "SplitNormalizedRectVectorCalculator" input_stream: "face_rects_from_landmarks" output_stream: "face_rect" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 0 end: 1 } element_only: true } } } # Gets two landmarks which define left eye boundary. node { calculator: "SplitNormalizedLandmarkListCalculator" input_stream: "face_landmarks" output_stream: "left_eye_boundary_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 33 end: 34 } ranges: { begin: 133 end: 134 } combine_outputs: true } } } # Gets two landmarks which define right eye boundary. node { calculator: "SplitNormalizedLandmarkListCalculator" input_stream: "face_landmarks" output_stream: "right_eye_boundary_landmarks" node_options: { [type.googleapis.com/mediapipe.SplitVectorCalculatorOptions] { ranges: { begin: 362 end: 363 } ranges: { begin: 263 end: 264 } combine_outputs: true } } } # Detects iris landmarks, eye contour landmarks, and corresponding rect (ROI). node { calculator: "IrisLandmarkLeftAndRightCpu" input_stream: "IMAGE:input_image" input_stream: "LEFT_EYE_BOUNDARY_LANDMARKS:left_eye_boundary_landmarks" input_stream: "RIGHT_EYE_BOUNDARY_LANDMARKS:right_eye_boundary_landmarks" output_stream: "LEFT_EYE_CONTOUR_LANDMARKS:left_eye_contour_landmarks" output_stream: "LEFT_EYE_IRIS_LANDMARKS:left_iris_landmarks" output_stream: "LEFT_EYE_ROI:left_eye_rect_from_landmarks" output_stream: "RIGHT_EYE_CONTOUR_LANDMARKS:right_eye_contour_landmarks" output_stream: "RIGHT_EYE_IRIS_LANDMARKS:right_iris_landmarks" output_stream: "RIGHT_EYE_ROI:right_eye_rect_from_landmarks" } node { calculator: "ConcatenateNormalizedLandmarkListCalculator" input_stream: "left_eye_contour_landmarks" input_stream: "right_eye_contour_landmarks" output_stream: "refined_eye_landmarks" } node { calculator: "UpdateFaceLandmarksCalculator" input_stream: "NEW_EYE_LANDMARKS:refined_eye_landmarks" input_stream: "FACE_LANDMARKS:face_landmarks" output_stream: "UPDATED_FACE_LANDMARKS:updated_face_landmarks" } # Renders annotations and overlays them on top of the input images. node { calculator: "IrisAndDepthRendererCpu" input_stream: "IMAGE:input_image" input_stream: "FACE_LANDMARKS:updated_face_landmarks" input_stream: "EYE_LANDMARKS_LEFT:left_eye_contour_landmarks" input_stream: "EYE_LANDMARKS_RIGHT:right_eye_contour_landmarks" input_stream: "IRIS_LANDMARKS_LEFT:left_iris_landmarks" input_stream: "IRIS_LANDMARKS_RIGHT:right_iris_landmarks" input_stream: "NORM_RECT:face_rect" input_stream: "LEFT_EYE_RECT:left_eye_rect_from_landmarks" input_stream: "RIGHT_EYE_RECT:right_eye_rect_from_landmarks" input_stream: "DETECTIONS:face_detections" input_side_packet: "IMAGE_FILE_PROPERTIES:image_file_properties" output_stream: "IRIS_LANDMARKS:iris_landmarks" output_stream: "IMAGE:output_image" output_stream: "LEFT_IRIS_DEPTH_MM:left_iris_depth_mm" output_stream: "RIGHT_IRIS_DEPTH_MM:right_iris_depth_mm" }