mediapipe-rs/mediapipe/graphs/template_matching/index_building.pbtxt

93 lines
2.5 KiB
Plaintext
Raw Normal View History

2022-03-01 13:04:01 +01:00
# MediaPipe graph that build feature descriptors index for specific target.
# max_queue_size limits the number of packets enqueued on any input stream
# by throttling inputs to the graph. This makes the graph only process one
# frame per time.
max_queue_size: 1
# Decodes an input video file into images and a video header.
node {
calculator: "LocalFilePatternContentsCalculator"
input_side_packet: "FILE_DIRECTORY:file_directory"
input_side_packet: "FILE_SUFFIX:file_suffix"
output_stream: "CONTENTS:encoded_image"
}
node {
calculator: "OpenCvEncodedImageToImageFrameCalculator"
input_stream: "encoded_image"
output_stream: "image_frame"
}
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:image_frame"
output_stream: "IMAGE:scaled_image_frame"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 320
output_height: 320
scale_mode: FILL_AND_CROP
}
}
}
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:scaled_image_frame"
output_stream: "SIZE:input_video_size"
}
node {
calculator: "FeatureDetectorCalculator"
input_stream: "IMAGE:scaled_image_frame"
output_stream: "FEATURES:features"
output_stream: "LANDMARKS:landmarks"
output_stream: "PATCHES:patches"
node_options: {
[type.googleapis.com/mediapipe.FeatureDetectorCalculatorOptions] {
max_features: 400
}
}
}
# input tensors: 200*32*32*1 float
# output tensors: 200*40 float, only first keypoint.size()*40 is knift features,
# rest is padded by zero.
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS:patches"
output_stream: "TENSORS:knift_feature_tensors"
input_stream_handler {
input_stream_handler: "DefaultInputStreamHandler"
}
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/knift_float_400.tflite"
}
}
}
node {
calculator: "TfLiteTensorsToFloatsCalculator"
input_stream: "TENSORS:knift_feature_tensors"
output_stream: "FLOATS:knift_feature_floats"
}
node {
calculator: "BoxDetectorCalculator"
input_side_packet: "OUTPUT_INDEX_FILENAME:output_index_filename"
input_stream: "FEATURES:features"
input_stream: "IMAGE_SIZE:input_video_size"
input_stream: "DESCRIPTORS:knift_feature_floats"
node_options: {
[type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] {
detector_options {
index_type: OPENCV_BF
detect_every_n_frame: 1
}
}
}
}