mediapipe-rs/mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt

77 lines
2.6 KiB
Plaintext
Raw Normal View History

2022-03-01 13:04:01 +01:00
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU.
# GPU buffer. (GpuBuffer)
input_stream: "input_video"
# Output image with rendered results. (GpuBuffer)
output_stream: "output_video"
# Detected faces. (std::vector<Detection>)
output_stream: "face_detections"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Transfers the input image from GPU to CPU memory for the purpose of
# demonstrating a CPU-based pipeline. Note that the input image on GPU has the
# origin defined at the bottom-left corner (OpenGL convention). As a result,
# the transferred image on CPU also shares the same representation.
node: {
calculator: "GpuBufferToImageFrameCalculator"
input_stream: "throttled_input_video"
output_stream: "input_video_cpu"
}
# Subgraph that detects faces.
node {
calculator: "FaceDetectionShortRangeCpu"
input_stream: "IMAGE:input_video_cpu"
output_stream: "DETECTIONS:face_detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:face_detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:input_video_cpu"
input_stream: "render_data"
output_stream: "IMAGE:output_video_cpu"
}
# Transfers the annotated image from CPU back to GPU memory, to be sent out of
# the graph.
node: {
calculator: "ImageFrameToGpuBufferCalculator"
input_stream: "output_video_cpu"
output_stream: "output_video"
}