mediapipe-rs/mediapipe/modules/face_geometry/libs/effect_renderer.cc

734 lines
27 KiB
C++
Raw Normal View History

2022-03-01 13:04:01 +01:00
// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/modules/face_geometry/libs/effect_renderer.h"
#include <cmath>
#include <cstdint>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/types/optional.h"
#include "mediapipe/framework/formats/image_format.pb.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/matrix_data.pb.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/status_macros.h"
#include "mediapipe/framework/port/statusor.h"
#include "mediapipe/gpu/gl_base.h"
#include "mediapipe/gpu/shader_util.h"
#include "mediapipe/modules/face_geometry/libs/mesh_3d_utils.h"
#include "mediapipe/modules/face_geometry/libs/validation_utils.h"
#include "mediapipe/modules/face_geometry/protos/environment.pb.h"
#include "mediapipe/modules/face_geometry/protos/face_geometry.pb.h"
#include "mediapipe/modules/face_geometry/protos/mesh_3d.pb.h"
namespace mediapipe::face_geometry {
namespace {
struct RenderableMesh3d {
static absl::StatusOr<RenderableMesh3d> CreateFromProtoMesh3d(
const Mesh3d& proto_mesh_3d) {
Mesh3d::VertexType vertex_type = proto_mesh_3d.vertex_type();
RenderableMesh3d renderable_mesh_3d;
renderable_mesh_3d.vertex_size = GetVertexSize(vertex_type);
ASSIGN_OR_RETURN(
renderable_mesh_3d.vertex_position_size,
GetVertexComponentSize(vertex_type, VertexComponent::POSITION),
_ << "Failed to get the position vertex size!");
ASSIGN_OR_RETURN(
renderable_mesh_3d.tex_coord_position_size,
GetVertexComponentSize(vertex_type, VertexComponent::TEX_COORD),
_ << "Failed to get the tex coord vertex size!");
ASSIGN_OR_RETURN(
renderable_mesh_3d.vertex_position_offset,
GetVertexComponentOffset(vertex_type, VertexComponent::POSITION),
_ << "Failed to get the position vertex offset!");
ASSIGN_OR_RETURN(
renderable_mesh_3d.tex_coord_position_offset,
GetVertexComponentOffset(vertex_type, VertexComponent::TEX_COORD),
_ << "Failed to get the tex coord vertex offset!");
switch (proto_mesh_3d.primitive_type()) {
case Mesh3d::TRIANGLE:
renderable_mesh_3d.primitive_type = GL_TRIANGLES;
break;
default:
RET_CHECK_FAIL() << "Only triangle primitive types are supported!";
}
renderable_mesh_3d.vertex_buffer.reserve(
proto_mesh_3d.vertex_buffer_size());
for (float vertex_element : proto_mesh_3d.vertex_buffer()) {
renderable_mesh_3d.vertex_buffer.push_back(vertex_element);
}
renderable_mesh_3d.index_buffer.reserve(proto_mesh_3d.index_buffer_size());
for (uint32_t index_element : proto_mesh_3d.index_buffer()) {
RET_CHECK_LE(index_element, std::numeric_limits<uint16_t>::max())
<< "Index buffer elements must fit into the `uint16` type in order "
"to be renderable!";
renderable_mesh_3d.index_buffer.push_back(
static_cast<uint16_t>(index_element));
}
return renderable_mesh_3d;
}
uint32_t vertex_size;
uint32_t vertex_position_size;
uint32_t tex_coord_position_size;
uint32_t vertex_position_offset;
uint32_t tex_coord_position_offset;
uint32_t primitive_type;
std::vector<float> vertex_buffer;
std::vector<uint16_t> index_buffer;
};
class Texture {
public:
static absl::StatusOr<std::unique_ptr<Texture>> WrapExternalTexture(
GLuint handle, GLenum target, int width, int height) {
RET_CHECK(handle) << "External texture must have a non-null handle!";
return absl::WrapUnique(new Texture(handle, target, width, height,
/*is_owned*/ false));
}
static absl::StatusOr<std::unique_ptr<Texture>> CreateFromImageFrame(
const ImageFrame& image_frame) {
RET_CHECK(image_frame.IsAligned(ImageFrame::kGlDefaultAlignmentBoundary))
<< "Image frame memory must be aligned for GL usage!";
RET_CHECK(image_frame.Width() > 0 && image_frame.Height() > 0)
<< "Image frame must have positive dimensions!";
RET_CHECK(image_frame.Format() == ImageFormat::SRGB ||
image_frame.Format() == ImageFormat::SRGBA)
<< "Image frame format must be either SRGB or SRGBA!";
GLint image_format;
switch (image_frame.NumberOfChannels()) {
case 3:
image_format = GL_RGB;
break;
case 4:
image_format = GL_RGBA;
break;
default:
RET_CHECK_FAIL()
<< "Unexpected number of channels; expected 3 or 4, got "
<< image_frame.NumberOfChannels() << "!";
}
GLuint handle;
glGenTextures(1, &handle);
RET_CHECK(handle) << "Failed to initialize an OpenGL texture!";
glBindTexture(GL_TEXTURE_2D, handle);
glTexParameteri(GL_TEXTURE_2D, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, image_format, image_frame.Width(),
image_frame.Height(), 0, image_format, GL_UNSIGNED_BYTE,
image_frame.PixelData());
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
return absl::WrapUnique(new Texture(
handle, GL_TEXTURE_2D, image_frame.Width(), image_frame.Height(),
/*is_owned*/ true));
}
~Texture() {
if (is_owned_) {
glDeleteProgram(handle_);
}
}
GLuint handle() const { return handle_; }
GLenum target() const { return target_; }
int width() const { return width_; }
int height() const { return height_; }
private:
Texture(GLuint handle, GLenum target, int width, int height, bool is_owned)
: handle_(handle),
target_(target),
width_(width),
height_(height),
is_owned_(is_owned) {}
GLuint handle_;
GLenum target_;
int width_;
int height_;
bool is_owned_;
};
class RenderTarget {
public:
static absl::StatusOr<std::unique_ptr<RenderTarget>> Create() {
GLuint framebuffer_handle;
glGenFramebuffers(1, &framebuffer_handle);
RET_CHECK(framebuffer_handle)
<< "Failed to initialize an OpenGL framebuffer!";
return absl::WrapUnique(new RenderTarget(framebuffer_handle));
}
~RenderTarget() {
glDeleteFramebuffers(1, &framebuffer_handle_);
// Renderbuffer handle might have never been created if this render target
// is destroyed before `SetColorbuffer()` is called for the first time.
if (renderbuffer_handle_) {
glDeleteFramebuffers(1, &renderbuffer_handle_);
}
}
absl::Status SetColorbuffer(const Texture& colorbuffer_texture) {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer_handle_);
glViewport(0, 0, colorbuffer_texture.width(), colorbuffer_texture.height());
glActiveTexture(GL_TEXTURE0);
glBindTexture(colorbuffer_texture.target(), colorbuffer_texture.handle());
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
colorbuffer_texture.target(),
colorbuffer_texture.handle(),
/*level*/ 0);
glBindTexture(colorbuffer_texture.target(), 0);
// If the existing depth buffer has different dimensions, delete it.
if (renderbuffer_handle_ &&
(viewport_width_ != colorbuffer_texture.width() ||
viewport_height_ != colorbuffer_texture.height())) {
glDeleteRenderbuffers(1, &renderbuffer_handle_);
renderbuffer_handle_ = 0;
}
// If there is no depth buffer, create one.
if (!renderbuffer_handle_) {
glGenRenderbuffers(1, &renderbuffer_handle_);
RET_CHECK(renderbuffer_handle_)
<< "Failed to initialize an OpenGL renderbuffer!";
glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer_handle_);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16,
colorbuffer_texture.width(),
colorbuffer_texture.height());
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, renderbuffer_handle_);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
}
viewport_width_ = colorbuffer_texture.width();
viewport_height_ = colorbuffer_texture.height();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glFlush();
return absl::OkStatus();
}
void Bind() const {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer_handle_);
glViewport(0, 0, viewport_width_, viewport_height_);
}
void Unbind() const { glBindFramebuffer(GL_FRAMEBUFFER, 0); }
void Clear() const {
Bind();
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glClearColor(0.f, 0.f, 0.f, 0.f);
glClearDepthf(1.f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
Unbind();
glFlush();
}
private:
explicit RenderTarget(GLuint framebuffer_handle)
: framebuffer_handle_(framebuffer_handle),
renderbuffer_handle_(0),
viewport_width_(-1),
viewport_height_(-1) {}
GLuint framebuffer_handle_;
GLuint renderbuffer_handle_;
int viewport_width_;
int viewport_height_;
};
class Renderer {
public:
enum class RenderMode { OPAQUE, OVERDRAW, OCCLUSION };
static absl::StatusOr<std::unique_ptr<Renderer>> Create() {
static const GLint kAttrLocation[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
static const GLchar* kAttrName[NUM_ATTRIBUTES] = {
"position",
"tex_coord",
};
static const GLchar* kVertSrc = R"(
uniform mat4 projection_mat;
uniform mat4 model_mat;
attribute vec4 position;
attribute vec4 tex_coord;
varying vec2 v_tex_coord;
void main() {
v_tex_coord = tex_coord.xy;
gl_Position = projection_mat * model_mat * position;
}
)";
static const GLchar* kFragSrc = R"(
precision mediump float;
varying vec2 v_tex_coord;
uniform sampler2D texture;
void main() {
gl_FragColor = texture2D(texture, v_tex_coord);
}
)";
GLuint program_handle = 0;
GlhCreateProgram(kVertSrc, kFragSrc, NUM_ATTRIBUTES,
(const GLchar**)&kAttrName[0], kAttrLocation,
&program_handle);
RET_CHECK(program_handle) << "Problem initializing the texture program!";
GLint projection_mat_uniform =
glGetUniformLocation(program_handle, "projection_mat");
GLint model_mat_uniform = glGetUniformLocation(program_handle, "model_mat");
GLint texture_uniform = glGetUniformLocation(program_handle, "texture");
RET_CHECK_NE(projection_mat_uniform, -1)
<< "Failed to find `projection_mat` uniform!";
RET_CHECK_NE(model_mat_uniform, -1)
<< "Failed to find `model_mat` uniform!";
RET_CHECK_NE(texture_uniform, -1) << "Failed to find `texture` uniform!";
return absl::WrapUnique(new Renderer(program_handle, projection_mat_uniform,
model_mat_uniform, texture_uniform));
}
~Renderer() { glDeleteProgram(program_handle_); }
absl::Status Render(const RenderTarget& render_target, const Texture& texture,
const RenderableMesh3d& mesh_3d,
const std::array<float, 16>& projection_mat,
const std::array<float, 16>& model_mat,
RenderMode render_mode) const {
glUseProgram(program_handle_);
// Set up the GL state.
glEnable(GL_BLEND);
glFrontFace(GL_CCW);
switch (render_mode) {
case RenderMode::OPAQUE:
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
break;
case RenderMode::OVERDRAW:
glBlendFunc(GL_ONE, GL_ZERO);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
break;
case RenderMode::OCCLUSION:
glBlendFunc(GL_ZERO, GL_ONE);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
break;
}
render_target.Bind();
// Set up vertex attributes.
glVertexAttribPointer(
ATTRIB_VERTEX, mesh_3d.vertex_position_size, GL_FLOAT, 0,
mesh_3d.vertex_size * sizeof(float),
mesh_3d.vertex_buffer.data() + mesh_3d.vertex_position_offset);
glEnableVertexAttribArray(ATTRIB_VERTEX);
glVertexAttribPointer(
ATTRIB_TEXTURE_POSITION, mesh_3d.tex_coord_position_size, GL_FLOAT, 0,
mesh_3d.vertex_size * sizeof(float),
mesh_3d.vertex_buffer.data() + mesh_3d.tex_coord_position_offset);
glEnableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
// Set up textures and uniforms.
glActiveTexture(GL_TEXTURE1);
glBindTexture(texture.target(), texture.handle());
glUniform1i(texture_uniform_, 1);
glUniformMatrix4fv(projection_mat_uniform_, 1, GL_FALSE,
projection_mat.data());
glUniformMatrix4fv(model_mat_uniform_, 1, GL_FALSE, model_mat.data());
// Draw the mesh.
glDrawElements(mesh_3d.primitive_type, mesh_3d.index_buffer.size(),
GL_UNSIGNED_SHORT, mesh_3d.index_buffer.data());
// Unbind textures and uniforms.
glActiveTexture(GL_TEXTURE1);
glBindTexture(texture.target(), 0);
render_target.Unbind();
// Unbind vertex attributes.
glDisableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glDisableVertexAttribArray(ATTRIB_VERTEX);
// Restore the GL state.
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glUseProgram(0);
glFlush();
return absl::OkStatus();
}
private:
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
Renderer(GLuint program_handle, GLint projection_mat_uniform,
GLint model_mat_uniform, GLint texture_uniform)
: program_handle_(program_handle),
projection_mat_uniform_(projection_mat_uniform),
model_mat_uniform_(model_mat_uniform),
texture_uniform_(texture_uniform) {}
GLuint program_handle_;
GLint projection_mat_uniform_;
GLint model_mat_uniform_;
GLint texture_uniform_;
};
class EffectRendererImpl : public EffectRenderer {
public:
EffectRendererImpl(
const Environment& environment,
std::unique_ptr<RenderTarget> render_target,
std::unique_ptr<Renderer> renderer,
RenderableMesh3d&& renderable_quad_mesh_3d,
absl::optional<RenderableMesh3d>&& renderable_effect_mesh_3d,
std::unique_ptr<Texture> empty_color_texture,
std::unique_ptr<Texture> effect_texture)
: environment_(environment),
render_target_(std::move(render_target)),
renderer_(std::move(renderer)),
renderable_quad_mesh_3d_(std::move(renderable_quad_mesh_3d)),
renderable_effect_mesh_3d_(std::move(renderable_effect_mesh_3d)),
empty_color_texture_(std::move(empty_color_texture)),
effect_texture_(std::move(effect_texture)),
identity_matrix_(Create4x4IdentityMatrix()) {}
absl::Status RenderEffect(
const std::vector<FaceGeometry>& multi_face_geometry,
int frame_width, //
int frame_height, //
GLenum src_texture_target, //
GLuint src_texture_name, //
GLenum dst_texture_target, //
GLuint dst_texture_name) {
// Validate input arguments.
MP_RETURN_IF_ERROR(ValidateFrameDimensions(frame_width, frame_height))
<< "Invalid frame dimensions!";
RET_CHECK(src_texture_name > 0 && dst_texture_name > 0)
<< "Both source and destination texture names must be non-null!";
RET_CHECK_NE(src_texture_name, dst_texture_name)
<< "Source and destination texture names must be different!";
// Validate all input face geometries.
for (const FaceGeometry& face_geometry : multi_face_geometry) {
MP_RETURN_IF_ERROR(ValidateFaceGeometry(face_geometry))
<< "Invalid face geometry!";
}
// Wrap both source and destination textures.
ASSIGN_OR_RETURN(
std::unique_ptr<Texture> src_texture,
Texture::WrapExternalTexture(src_texture_name, src_texture_target,
frame_width, frame_height),
_ << "Failed to wrap the external source texture");
ASSIGN_OR_RETURN(
std::unique_ptr<Texture> dst_texture,
Texture::WrapExternalTexture(dst_texture_name, dst_texture_target,
frame_width, frame_height),
_ << "Failed to wrap the external destination texture");
// Set the destination texture as the color buffer. Then, clear both the
// color and the depth buffers for the render target.
MP_RETURN_IF_ERROR(render_target_->SetColorbuffer(*dst_texture))
<< "Failed to set the destination texture as the colorbuffer!";
render_target_->Clear();
// Render the source texture on top of the quad mesh (i.e. make a copy)
// into the render target.
MP_RETURN_IF_ERROR(renderer_->Render(
*render_target_, *src_texture, renderable_quad_mesh_3d_,
identity_matrix_, identity_matrix_, Renderer::RenderMode::OVERDRAW))
<< "Failed to render the source texture on top of the quad mesh!";
// Extract pose transform matrices and meshes from the face geometry data;
const int num_faces = multi_face_geometry.size();
std::vector<std::array<float, 16>> face_pose_transform_matrices(num_faces);
std::vector<RenderableMesh3d> renderable_face_meshes(num_faces);
for (int i = 0; i < num_faces; ++i) {
const FaceGeometry& face_geometry = multi_face_geometry[i];
// Extract the face pose transformation matrix.
ASSIGN_OR_RETURN(
face_pose_transform_matrices[i],
Convert4x4MatrixDataToArrayFormat(
face_geometry.pose_transform_matrix()),
_ << "Failed to extract the face pose transformation matrix!");
// Extract the face mesh as a renderable.
ASSIGN_OR_RETURN(
renderable_face_meshes[i],
RenderableMesh3d::CreateFromProtoMesh3d(face_geometry.mesh()),
_ << "Failed to extract a renderable face mesh!");
}
// Create a perspective matrix using the frame aspect ratio.
std::array<float, 16> perspective_matrix = CreatePerspectiveMatrix(
/*aspect_ratio*/ static_cast<float>(frame_width) / frame_height);
// Render a face mesh occluder for each face.
for (int i = 0; i < num_faces; ++i) {
const std::array<float, 16>& face_pose_transform_matrix =
face_pose_transform_matrices[i];
const RenderableMesh3d& renderable_face_mesh = renderable_face_meshes[i];
// Render the face mesh using the empty color texture, i.e. the face
// mesh occluder.
//
// For occlusion, the pose transformation is moved ~1mm away from camera
// in order to allow the face mesh texture to be rendered without
// failing the depth test.
std::array<float, 16> occlusion_face_pose_transform_matrix =
face_pose_transform_matrix;
occlusion_face_pose_transform_matrix[14] -= 0.1f; // ~ 1mm
MP_RETURN_IF_ERROR(renderer_->Render(
*render_target_, *empty_color_texture_, renderable_face_mesh,
perspective_matrix, occlusion_face_pose_transform_matrix,
Renderer::RenderMode::OCCLUSION))
<< "Failed to render the face mesh occluder!";
}
// Render the main face mesh effect component for each face.
for (int i = 0; i < num_faces; ++i) {
const std::array<float, 16>& face_pose_transform_matrix =
face_pose_transform_matrices[i];
// If there is no effect 3D mesh provided, then the face mesh itself is
// used as a topology for rendering (for example, this can be used for
// facepaint effects or AR makeup).
const RenderableMesh3d& main_effect_mesh_3d =
renderable_effect_mesh_3d_ ? *renderable_effect_mesh_3d_
: renderable_face_meshes[i];
MP_RETURN_IF_ERROR(renderer_->Render(
*render_target_, *effect_texture_, main_effect_mesh_3d,
perspective_matrix, face_pose_transform_matrix,
Renderer::RenderMode::OPAQUE))
<< "Failed to render the main effect pass!";
}
// At this point in the code, the destination texture must contain the
// correctly renderer effect, so we should just return.
return absl::OkStatus();
}
private:
std::array<float, 16> CreatePerspectiveMatrix(float aspect_ratio) const {
static constexpr float kDegreesToRadians = M_PI / 180.f;
std::array<float, 16> perspective_matrix;
perspective_matrix.fill(0.f);
const auto& env_camera = environment_.perspective_camera();
// Standard perspective projection matrix calculations.
const float f = 1.0f / std::tan(kDegreesToRadians *
env_camera.vertical_fov_degrees() / 2.f);
const float denom = 1.0f / (env_camera.near() - env_camera.far());
perspective_matrix[0] = f / aspect_ratio;
perspective_matrix[5] = f;
perspective_matrix[10] = (env_camera.near() + env_camera.far()) * denom;
perspective_matrix[11] = -1.f;
perspective_matrix[14] = 2.f * env_camera.far() * env_camera.near() * denom;
// If the environment's origin point location is in the top left corner,
// then skip additional flip along Y-axis is required to render correctly.
if (environment_.origin_point_location() ==
OriginPointLocation::TOP_LEFT_CORNER) {
perspective_matrix[5] *= -1.f;
}
return perspective_matrix;
}
static std::array<float, 16> Create4x4IdentityMatrix() {
return {1.f, 0.f, 0.f, 0.f, //
0.f, 1.f, 0.f, 0.f, //
0.f, 0.f, 1.f, 0.f, //
0.f, 0.f, 0.f, 1.f};
}
static absl::StatusOr<std::array<float, 16>>
Convert4x4MatrixDataToArrayFormat(const MatrixData& matrix_data) {
RET_CHECK(matrix_data.rows() == 4 && //
matrix_data.cols() == 4 && //
matrix_data.packed_data_size() == 16)
<< "The matrix data must define a 4x4 matrix!";
std::array<float, 16> matrix_array;
for (int i = 0; i < 16; i++) {
matrix_array[i] = matrix_data.packed_data(i);
}
// Matrix array must be in the OpenGL-friendly column-major order. If
// `matrix_data` is in the row-major order, then transpose.
if (matrix_data.layout() == MatrixData::ROW_MAJOR) {
std::swap(matrix_array[1], matrix_array[4]);
std::swap(matrix_array[2], matrix_array[8]);
std::swap(matrix_array[3], matrix_array[12]);
std::swap(matrix_array[6], matrix_array[9]);
std::swap(matrix_array[7], matrix_array[13]);
std::swap(matrix_array[11], matrix_array[14]);
}
return matrix_array;
}
Environment environment_;
std::unique_ptr<RenderTarget> render_target_;
std::unique_ptr<Renderer> renderer_;
RenderableMesh3d renderable_quad_mesh_3d_;
absl::optional<RenderableMesh3d> renderable_effect_mesh_3d_;
std::unique_ptr<Texture> empty_color_texture_;
std::unique_ptr<Texture> effect_texture_;
std::array<float, 16> identity_matrix_;
};
Mesh3d CreateQuadMesh3d() {
static constexpr float kQuadMesh3dVertexBuffer[] = {
-1.f, -1.f, 0.f, 0.f, 0.f, //
1.f, -1.f, 0.f, 1.f, 0.f, //
-1.f, 1.f, 0.f, 0.f, 1.f, //
1.f, 1.f, 0.f, 1.f, 1.f, //
};
static constexpr uint16_t kQuadMesh3dIndexBuffer[] = {0, 1, 2, 1, 3, 2};
static constexpr int kQuadMesh3dVertexBufferSize =
sizeof(kQuadMesh3dVertexBuffer) / sizeof(float);
static constexpr int kQuadMesh3dIndexBufferSize =
sizeof(kQuadMesh3dIndexBuffer) / sizeof(uint16_t);
Mesh3d quad_mesh_3d;
quad_mesh_3d.set_vertex_type(Mesh3d::VERTEX_PT);
quad_mesh_3d.set_primitive_type(Mesh3d::TRIANGLE);
for (int i = 0; i < kQuadMesh3dVertexBufferSize; ++i) {
quad_mesh_3d.add_vertex_buffer(kQuadMesh3dVertexBuffer[i]);
}
for (int i = 0; i < kQuadMesh3dIndexBufferSize; ++i) {
quad_mesh_3d.add_index_buffer(kQuadMesh3dIndexBuffer[i]);
}
return quad_mesh_3d;
}
ImageFrame CreateEmptyColorTexture() {
static constexpr ImageFormat::Format kEmptyColorTextureFormat =
ImageFormat::SRGBA;
static constexpr int kEmptyColorTextureWidth = 1;
static constexpr int kEmptyColorTextureHeight = 1;
ImageFrame empty_color_texture(
kEmptyColorTextureFormat, kEmptyColorTextureWidth,
kEmptyColorTextureHeight, ImageFrame::kGlDefaultAlignmentBoundary);
empty_color_texture.SetToZero();
return empty_color_texture;
}
} // namespace
absl::StatusOr<std::unique_ptr<EffectRenderer>> CreateEffectRenderer(
const Environment& environment, //
const absl::optional<Mesh3d>& effect_mesh_3d, //
ImageFrame&& effect_texture) {
MP_RETURN_IF_ERROR(ValidateEnvironment(environment))
<< "Invalid environment!";
if (effect_mesh_3d) {
MP_RETURN_IF_ERROR(ValidateMesh3d(*effect_mesh_3d))
<< "Invalid effect 3D mesh!";
}
ASSIGN_OR_RETURN(std::unique_ptr<RenderTarget> render_target,
RenderTarget::Create(),
_ << "Failed to create a render target!");
ASSIGN_OR_RETURN(std::unique_ptr<Renderer> renderer, Renderer::Create(),
_ << "Failed to create a renderer!");
ASSIGN_OR_RETURN(RenderableMesh3d renderable_quad_mesh_3d,
RenderableMesh3d::CreateFromProtoMesh3d(CreateQuadMesh3d()),
_ << "Failed to create a renderable quad mesh!");
absl::optional<RenderableMesh3d> renderable_effect_mesh_3d;
if (effect_mesh_3d) {
ASSIGN_OR_RETURN(renderable_effect_mesh_3d,
RenderableMesh3d::CreateFromProtoMesh3d(*effect_mesh_3d),
_ << "Failed to create a renderable effect mesh!");
}
ASSIGN_OR_RETURN(std::unique_ptr<Texture> empty_color_gl_texture,
Texture::CreateFromImageFrame(CreateEmptyColorTexture()),
_ << "Failed to create an empty color texture!");
ASSIGN_OR_RETURN(std::unique_ptr<Texture> effect_gl_texture,
Texture::CreateFromImageFrame(effect_texture),
_ << "Failed to create an effect texture!");
std::unique_ptr<EffectRenderer> result =
absl::make_unique<EffectRendererImpl>(
environment, std::move(render_target), std::move(renderer),
std::move(renderable_quad_mesh_3d),
std::move(renderable_effect_mesh_3d),
std::move(empty_color_gl_texture), std::move(effect_gl_texture));
return result;
}
} // namespace mediapipe::face_geometry